Matthieu Verstraete
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthieu Verstraete.
Computational Materials Science | 2002
Xavier Gonze; Jean-Michel Beuken; Razvan Caracas; F Detraux; M Fuchs; Gian-Marco Rignanese; Luc Sindic; Matthieu Verstraete; Gilles Zerah; F. Jollet; M. Torrent; A Roy; Masayoshi Mikami; Philippe Ghosez; Jean-Yves Raty; Dc. Allan
The density functional theory (DFT) computation of electronic structure, total energy and other properties of materials, is a field in constant progress. In order to stay at the forefront of knowledge, a DFT software project can benefit enormously from widespread collaboration, if handled properly. Also, modern software engineering concepts can considerably ease its development. The ABINIT project relies upon these ideas: freedom of sources, reliability, portability, and self-documentation are emphasised, in the development of a sophisticated plane-wave pseudopotential code. We describe ABINITv3.0, distributed under the GNU General Public License. The list of ABINITv3.0 capabilities is presented, as well as the different software techniques that have been used until now: PERL scripts and CPP directives treat a unique set of FORTRAN90 source files to generate sequential (or parallel) object code for many different platforms; more than 200 automated tests secure existing capabilities; strict coding rules are followed; the documentation is extensive, including online help files, tutorials, and HTML-formatted sources
Zeitschrift Fur Kristallographie | 2005
Xavier Gonze; Gian-Marco Rignanese; Matthieu Verstraete; Jean-Michel Beuken; Yann Pouillon; Razvan Caracas; F. Jollet; M. Torrent; Gilles Zerah; Masayoshi Mikami; Philippe Ghosez; M. Veithen; Jean-Yves Raty; Valerio Olevano; Fabien Bruneval; Lucia Reining; R. W. Godby; Giovanni Onida; Hamann; Dc. Allan
Abstract A brief introduction to the ABINIT software package is given. Available under a free software license, it allows to compute directly a large set of properties useful for solid state studies, including structural and elastic properties, prediction of phase (meta)stability or instability, specific heat and free energy, spectroscopic and vibrational properties. These are described, and corresponding applications are presented. The emphasis is also laid on its ease of use and extensive documentation, allowing newcomers to quickly step in.
Physical Chemistry Chemical Physics | 2015
Xavier Andrade; David A. Strubbe; Umberto De Giovannini; Ask Hjorth Larsen; Micael J. T. Oliveira; Joseba Alberdi-Rodriguez; Alejandro Varas; Iris Theophilou; N. Helbig; Matthieu Verstraete; Lorenzo Stella; Fernando Nogueira; Alán Aspuru-Guzik; Alberto Castro; Miguel A. L. Marques; Angel Rubio
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.
Physical Review A | 2011
N. Helbig; Johanna I. Fuks; Michele Casula; Matthieu Verstraete; Miguel A. L. Marques; I. V. Tokatly; Angel Rubio
We present a local density approximation (LDA) for one-dimensional (1D) systems interacting via the soft-Coulomb interaction based on quantum Monte Carlo calculations. Results for the ground-state energies and ionization potentials of finite 1D systems show excellent agreement with exact calculations obtained by exploiting the mapping of an N-electron system in d dimensions onto a single electron in Nxd dimensions, properly symmetrized by the Young diagrams. We conclude that 1D LDA is of the same quality as its three-dimensional (3D) counterpart, and we infer conclusions about 3D LDA. The linear and nonlinear time-dependent responses of 1D model systems using LDA, exact exchange, and the exact solution are investigated and show very good agreement in both cases, except for the well-known problem of missing double excitations. Consequently, the 3D LDA is expected to be of good quality beyond the linear response. In addition, the 1D LDA should prove useful in modeling the interaction of atoms with strong laser fields, where this specific 1D model is often used.
Physical Review B | 2015
Aldo H. Romero; E. K. U. Gross; Matthieu Verstraete; Olle Hellman
We investigate the harmonic and anharmonic contributions to the phonon spectrum of lead telluride and perform a complete characterization of how thermal properties of PbTe evolve as temperature increases. We analyze the thermal resistivitys variation with temperature and clarify misconceptions about existing experimental literature. The resistivity initially increases sublinearly because of phase space effects and ultra strong anharmonic renormalizations of specific bands. This effect is the strongest factor in the favorable thermoelectric properties of PbTe, and it explains its limitations at higher T . This quantitative prediction opens the prospect of phonon phase space engineering to tailor the lifetimes of crucial heat carrying phonons by considering different structure or nanostructure geometries. We analyze the available scattering volume between TO and LA phonons as a function of temperature and correlate its changes to features in the thermal conductivity.
Journal of Chemical Physics | 2015
Samuel Poncé; Yannick Gillet; J. Laflamme Janssen; A. C. Marini; Matthieu Verstraete; Xavier Gonze
The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.
ACS Nano | 2012
Adam J. Simbeck; Nick Lanzillo; Neerav Kharche; Matthieu Verstraete; Saroj K. Nayak
Using a first-principles density functional method, we have studied the electronic structure, electron-phonon coupling, and quantum transport properties of atomic wires of Ag, Al, Au, and Cu. Non-equilibrium Greens function-based transport studies of finite atomic wires suggest that the conductivity of Al atomic wires is higher than that of Ag, Au, and Cu in contrast to the bulk where Al has the lowest conductivity among these systems. This is attributed to the higher number of eigenchannels in Al wires, which becomes the determining factor in the ballistic limit. On the basis of density functional perturbation theory, we find that the electron-phonon coupling constant of the Al atomic wire is lowest among the four metals studied, and more importantly, that the value is reduced by a factor of 50 compared to the bulk.
Physical Review Letters | 2016
Antoine Dewandre; Olle Hellman; Sandip Bhattacharya; Aldo H. Romero; Georg K. H. Madsen; Matthieu Verstraete
The interest in improving the thermoelectric response of bulk materials has received a boost after it has been recognized that layered materials, in particular SnSe, show a very large thermoelectric figure of merit. This result has received great attention while it is now possible to conceive other similar materials or experimental methods to improve this value. Before we can now think of engineering this material it is important we understand the basic mechanism that explains this unusual behavior, where very low thermal conductivity and a high thermopower result from a delicate balance between the crystal and electronic structure. In this Letter, we present a complete temperature evolution of the Seebeck coefficient as the material undergoes a soft crystal transformation and its consequences on other properties within SnSe by means of first-principles calculations. Our results are able to explain the full range of considered experimental temperatures.
Computer Physics Communications | 2018
M.J. Van Setten; Matteo Giantomassi; Eric Bousquet; Matthieu Verstraete; Don R. Hamann; Xavier Gonze; Gian-Marco Rignanese
Abstract First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb potential near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm-conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not designed primarily for high precision. In this paper, we present our PseudoDojo framework for developing and testing full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PseudoDojo is an open source project, building on the AbiPy package, for developing and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed with ABINIT , which are performed as a function of the energy cutoff. The results of these tests are then used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into a standard and a stringent accuracy table. In total around 70,000 calculations were performed to test the pseudopotentials. The process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. The PseudoDojo hence provides a set of pseudopotentials and general purpose tools for further testing and development, focusing on highly accurate calculations and their use in the development of ab initio packages. The pseudopotential files are available on the PseudoDojo web-interface pseudo-dojo.org under the name NC (ONCVPSP) v0.4 in the psp8, UPF2, and PSML 1.1 formats. The webinterface also provides the inputs, which are compatible with the 3.3.1 and higher versions of ONCVPSP. All tests have been performed with ABINIT 8.4.
Journal of Physics: Condensed Matter | 2013
Matthieu Verstraete
The spin-dependent coupling between electrons and phonons in ferromagnetic Fe and Co is calculated from first principles in a collinear-spin formalism. The added spin polarization is fundamental for the correct representation of the phonons, but also for obtaining good transport properties, and permits decomposition (e.g. of the resistivity) into the contributions of majority and minority spin. In Fe the minority spin coupling is only about 50% more important, but in Co the coupling between phonons and minority spin electrons is an order of magnitude larger than that with the majority spin, and both are strongly anisotropic.