Matthieu Wyart
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthieu Wyart.
Physical Review E | 2005
Matthieu Wyart; Leonardo E. Silbert; Sidney R. Nagel; Thomas A. Witten
Glasses have a large excess of low-frequency vibrational modes in comparison with most crystalline solids. We show that such a feature is a necessary consequence of the weak connectivity of the solid, and that the frequency of modes in excess is very sensitive to the pressure. We analyze, in particular, two systems whose density D(omega) of vibrational modes of angular frequency omega display scaling behaviors with the packing fraction: (i) simulations of jammed packings of particles interacting through finite-range, purely repulsive potentials, comprised of weakly compressed spheres at zero temperature and (ii) a system with the same network of contacts, but where the force between any particles in contact (and therefore the total pressure) is set to zero. We account in the two cases for the observed (a) convergence of D(omega) toward a nonzero constant as omega-->0, (b) appearance of a low-frequency cutoff omega*, and (c) power-law increase of omega* with compression. Differences between these two systems occur at a lower frequency. The density of states of the modified system displays an abrupt plateau that appears at omega*, below which we expect the system to behave as a normal, continuous, elastic body. In the unmodified system, the pressure lowers the frequency of the modes in excess. The requirement of stability despite the destabilizing effect of pressure yields a lower bound on the number of extra contact per particle deltaz:deltaz> or =p1/2, which generalizes the Maxwell criterion for rigidity when pressure is present. This scaling behavior is observed in the simulations. We finally discuss how the cooling procedure can affect the microscopic structure and the density of normal modes.
Physical Review E | 2005
Cristina Toninelli; Matthieu Wyart; Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud
We compute analytically and numerically the four-point correlation function that characterizes non-trivial cooperative dynamics in glassy systems within several models of glasses: elasto-plastic deformations, mode-coupling theory (MCT), collectively rearranging regions (CRR), diffusing defects and kinetically constrained models (KCM). Some features of the four-point susceptibility chi_4(t) are expected to be universal. at short times we expect an elastic regime characterized by a t or sqrt{t} growth. We find both in the beta, and the early alpha regime that chi_4 sim t^mu, where mu is directly related to the mechanism responsible for relaxation. This regime ends when a maximum of chi_4 is reached at a time t=t^* of the order of the relaxation time of the system. This maximum is followed by a fast decay to zero at large times. The height of the maximum also follows a power-law, chi_4(t^*) sim t^{*lambda}. The value of the exponents mu and lambda allows one to distinguish between different mechanisms. For example, freely diffusing defects in d=3 lead to mu=2 and lambda=1, whereas the CRR scenario rather predicts either mu=1 or a logarithmic behaviour depending on the nature of the nucleation events, and a logarithmic behaviour of chi_4(t^*). MCT leads to mu=b and lambda =1/gamma, where b and gamma are the standard MCT exponents. We compare our theoretical results with numerical simulations on a Lennard-Jones and a soft-sphere system. Within the limited time-scales accessible to numerical simulations, we find that the exponent mu is rather small, mu<1, with a value in reasonable agreement with the MCT predictions.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Christopher Fang-Yen; Matthieu Wyart; Julie Xie; Risa Kawai; Thomas Edward Kodger; Sway Chen; Quan Wen; Aravinthan D. T. Samuel
To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm’s body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm’s elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust.
Physical Review Letters | 2014
Matthieu Wyart; M. E. Cates
A consensus is emerging that discontinuous shear thickening (DST) in dense suspensions marks a transition from a flow state where particles remain well separated by lubrication layers, to one dominated by frictional contacts. We show here that reasonable assumptions about contact proliferation predict two distinct types of DST in the absence of inertia. The first occurs at densities above the jamming point of frictional particles; here, the thickened state is completely jammed and (unless particles deform) cannot flow without inhomogeneity or fracture. The second regime shows strain-rate hysteresis and arises at somewhat lower densities, where the thickened phase flows smoothly. DST is predicted to arise when finite-range repulsions defer contact formation until a characteristic stress level is exceeded.
Physical Review Letters | 2008
Matthieu Wyart; Haiyi Liang; Alexandre Kabla; L. Mahadevan
We study the linear and nonlinear elastic behavior of amorphous systems using a two-dimensional random network of harmonic springs as a model system. A natural characterization of these systems arises in terms of the network coordination (average number of springs per node) relative to that of a marginally rigid network deltaz: a floppy network has deltaz<0, while a stiff network has deltaz>0. Under the influence of an externally applied load, we observe that the response of both floppy and stiff networks is controlled by the critical point corresponding to the onset of rigidity. We use numerical simulations to compute the exponents which characterize the shear modulus, the heterogeneity of the response, and the network stiffening as a function of deltaz and derive these theoretically, thus allowing us to predict aspects of the mechanical response of glasses and fibrous networks.
Quantitative Finance | 2008
Matthieu Wyart; J.-P. Bouchaud; Julien Kockelkoren; Marc Potters; Michele Vettorazzo
We show that the cost of market orders and the profit of infinitesimal market-making or -taking strategies can be expressed in terms of directly observable quantities, namely the spread and the lag-dependent impact function. Imposing that any market taking or liquidity providing strategies is at best marginally profitable, we obtain a linear relation between the bid–ask spread and the instantaneous impact of market orders, in good agreement with our empirical observations on electronic markets. We then use this relation to justify a strong, and hitherto unnoticed, empirical correlation between the spread and the volatility per trade, with R 2s exceeding 0.9. This correlation suggests both that the main determinant of the bid–ask spread is adverse selection, and that most of the volatility comes from trade impact. We argue that the role of the time-horizon appearing in the definition of costs is crucial and that long-range correlations in the order flow, overlooked in previous studies, must be carefully factored in. We find that the spread is significantly larger on the NYSE, a liquid market with specialists, where monopoly rents appear to be present.
Journal of Chemical Physics | 2009
Carolina Brito; Matthieu Wyart
We derive a microscopic criterion for the stability of hard sphere configurations and we show empirically that this criterion is marginally satisfied in the glass. This observation supports a geometric interpretation for the initial rapid rise in viscosity with packing fraction or previtrification. It also implies that barely stable soft modes characterize the glass structure, whose spatial extension is estimated. We show that both the short-term dynamics and activation processes occur mostly along those soft modes and we study some implications of these observations. This article synthesizes new and previous results [C. Brito and M. Wyart, Europhys. Lett. 76, 149 (2006); C. Brito and M. Wyart, J. Stat. Mech.: Theory Exp. 2007, L08003] in a unified view.
Physical Review Letters | 2012
Matthieu Wyart
The requirement that packings of hard particles, arguably the simplest structural glass, cannot be compressed by rearranging their network of contacts is shown to yield a new constraint on their microscopic structure. This constraint takes the form a bound between the distribution of contact forces P (f) and the pair distribution function g(r): if P (f) ∼ f and g(r) ∼ (r−σ0) −γ , where σ0 is the particle diameter, one finds that γ ≥ 1/(2+θ). This bound plays a role similar to those found in some glassy materials with long-range interactions, such as the Coulomb gap in Anderson insulators or the distribution of local fields in mean-field spin glasses. There is ground to believe that this bound is saturated, offering an explanation for the presence of avalanches of rearrangements with power-law statistics observed in packings.
Physical Review Letters | 2007
Ning Xu; Matthieu Wyart; Andrea J. Liu; Sidney R. Nagel
The excess low-frequency normal modes for two widely used models of glasses are studied at zero temperature. The onset frequencies for the anomalous modes for both systems agree well with predictions of a variational argument, which is based on analyzing the vibrational energy originating from the excess contacts per particle over the minimum number needed for mechanical stability. Even though both glasses studied have a high coordination number, most of the additional contacts can be considered to be weak. Our understanding of liquids is based on the idea that liquid structure is largely determined by strong shortranged repulsions and that the longer-ranged attractions can be treated as a perturbation [1]. Similar considerations were used to study jamming at zero temperature as a function of density � [2,3]. When potentials are repulsive and have a finite range, there is a sharp jamming transition
Journal of Statistical Mechanics: Theory and Experiment | 2007
Carolina Brito; Matthieu Wyart
In a recent publication we established an analogy between the free energy of a hard sphere system and the energy of an elastic network. This result enables one to study the free energy landscape of hard spheres, which was previously accessible only via density functional theory. In our formalism normal modes can easily be defined and computed. In this work we use these tools to analyze the activated transitions between meta-basins, both in the ageing regime deep in the glass phase and near the glass transition. We observe numerically that structural relaxation occurs mostly along a very small number of nearly unstable extended modes. This number decays for denser packing and is significantly lowered as the system undergoes the glass transition. This observation supports the assertion that structural relaxation and marginal modes share common properties. In particular, theoretical results show that these modes extend at least on some length scale l*~(c−)−1/2 where c corresponds to the maximum packing fraction, i.e. the jamming transition. This prediction is consistent with very recent numerical observations of dynamical length scales in sheared systems near the jamming threshold, where a similar exponent is found, and with the commonly observed growth of the rearranging regions with compression near the glass transition.