Matti Jalasvuori
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matti Jalasvuori.
Origins of Life and Evolution of Biospheres | 2008
Matti Jalasvuori; Jaana K. H. Bamford
Viruses and cells co-evolve due to the parasitic nature of viruses. Yet there are no models suggesting how the unicellular organisms and their viruses might co-evolve structurally. Here, in this study, we plunge into this unexplored field from a wide perspective and try to describe some of the intriguing ways in which viruses may have shaped the cellular life forms on the ancient Earth. At first we propose a scenario where viruses act as a driving force in the emergence of bacterial cell walls by providing favorable intermediates for the otherwise improbable steps in the cell wall generation. We also discuss the role of viruses in the evolution of cell surface components such as receptors and second membranes. Finally we focus on hypothetical proto-viruses, the selfish abusers of the RNA-world, in explaining some of the very early stages in the origin and evolution of life. Proto-viruses may be responsible for creating the first true cells in order to support their selfish needs. In this model we also suggest a logical pathway to explaining the emergence of modern viruses.
Journal of Virology | 2012
Salla T. Jaakkola; Reetta Penttinen; Silja T. Vilén; Matti Jalasvuori; Gunilla Rönnholm; Jaana K. H. Bamford; Dennis H. Bamford; Hanna M. Oksanen
ABSTRACT Studies on viral capsid architectures and coat protein folds have revealed the evolutionary lineages of viruses branching to all three domains of life. A widespread group of icosahedral tailless viruses, the PRD1-adenovirus lineage, was the first to be established. A double β-barrel fold for a single major capsid protein is characteristic of these viruses. Similar viruses carrying genes coding for two major capsid proteins with a more complex structure, such as Thermus phage P23-77 and haloarchaeal virus SH1, have been isolated. Here, we studied the host range, life cycle, biochemical composition, and genomic sequence of a new isolate, Haloarcula hispanica icosahedral virus 2 (HHIV-2), which resembles SH1 despite being isolated from a different location. Comparative analysis of these viruses revealed that their overall architectures are very similar except that the genes for the receptor recognition vertex complexes are unrelated even though these viruses infect the same hosts.
Applied and Environmental Microbiology | 2008
Shanmuga Sozhamannan; Michael McKinstry; Shannon M. Lentz; Matti Jalasvuori; Farrell Mcafee; Angela Smith; Jason Dabbs; Hans-W. Ackermann; Jaana K. H. Bamford; Alfred Mateczun; Timothy D. Read
ABSTRACT The genome sequence of a Bacillus anthracis-specific clear plaque mutant phage, AP50c, contains 31 open reading frames spanning 14,398 bp, has two mutations compared to wild-type AP50t, and has a colinear genome architecture highly similar to that of gram-positive Tectiviridae phages. Spontaneous AP50c-resistant B. anthracis mutants exhibit a mucoid colony phenotype.
Journal of Virology | 2009
Matti Jalasvuori; Silja T. Jaatinen; Simonas Laurinavičius; Elina Ahola-Iivarinen; Nisse Kalkkinen; Dennis H. Bamford; Jaana K. H. Bamford
ABSTRACT We have sequenced the genome and identified the structural proteins and lipids of the novel membrane-containing, icosahedral virus P23-77 of Thermus thermophilus. P23-77 has an ∼17-kb circular double-stranded DNA genome, which was annotated to contain 37 putative genes. Virions were subjected to dissociation analysis, and five protein species were shown to associate with the internal viral membrane, while three were constituents of the protein capsid. Analysis of the bacteriophage genome revealed it to be evolutionarily related to another Thermus phage (IN93), archaeal Halobacterium plasmid (pHH205), a genetic element integrated into Haloarcula genome (designated here as IHP for integrated Haloarcula provirus), and the Haloarcula virus SH1. These genetic elements share two major capsid proteins and a putative packaging ATPase. The ATPase is similar with the ATPases found in the PRD1-type viruses, thus providing an evolutionary link to these viruses and furthering our knowledge on the origin of viruses.
PLOS ONE | 2011
Ville-Petri Friman; Teppo Hiltunen; Matti Jalasvuori; Carita Lindstedt; Elina Laanto; Anni Maria Örmälä; Jouni Laakso; Johanna Mappes; Jaana K. H. Bamford
The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae) at 25°C and 37°C for four weeks (N = 5). At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs.
Biology Letters | 2011
Matti Jalasvuori; Ville-Petri Friman; Anne Nieminen; Jaana K. H. Bamford; Angus Buckling
Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.
Evolutionary Applications | 2013
Ville Ojala; Jarkko Laitalainen; Matti Jalasvuori
The emergence of pathogenic bacteria resistant to multiple antibiotics is a serious worldwide public health concern. Whenever antibiotics are applied, the genes encoding for antibiotic resistance are selected for within bacterial populations. This has led to the prevalence of conjugative plasmids that carry resistance genes and can transfer themselves between diverse bacterial groups. In this study, we investigated whether it is feasible to attempt to prevent the spread of antibiotic resistances with a lytic bacteriophage, which can replicate in a wide range of gram‐negative bacteria harbouring conjugative drug resistance–conferring plasmids. The counter‐selection against the plasmid was shown to be effective, reducing the frequency of multidrug‐resistant bacteria that formed via horizontal transfer by several orders of magnitude. This was true also in the presence of an antibiotic against which the plasmid provided resistance. Majority of the multiresistant bacteria subjected to phage selection also lost their conjugation capability. Overall this study suggests that, while we are obligated to maintain the selection for the spread of the drug resistances, the ‘fight evolution with evolution’ approach could help us even out the outcome to our favour.
Bacteriophage | 2013
Anni-Maria Örmälä; Matti Jalasvuori
Bacteriophage therapy, the use of viruses that infect bacteria as antimicrobials, has been championed as a promising alternative to conventional antibiotics. Although in the laboratory bacterial resistance against phages arises rapidly, resistance so far has been an only minor problem for the effectiveness of phage therapy. Resistance to antibiotics, however, has become a major issue after decades of extensive use. Should we expect similar problems after long-term use of phages as antimicrobials? Like antibiotics, phages are often noted to be drivers of bacterial evolution. Should we expect phage-treated pathogens to develop a general resistance to phages over time, a resistance against which only, for example, hypothetically co-evolved phages might be infective? Here we argue that the global infection patterns of phages suggest that this is not necessarily a concern as environmental phages often can infect bacteria with which those phages lack any recent co-evolutionary history.
Annals of the New York Academy of Sciences | 2015
Matti Jalasvuori; Eugene V. Koonin
Prokaryotes harbor a variety of genetic replicators, including plasmids, viruses, and chromosomes, each having different effects on the phenotype of the hosting cell. Here, we propose a classification for replicators of bacteria and archaea on the basis of their horizontal‐transfer potential and the type of relationships (mutualistic, symbiotic, commensal, or parasitic) that they have with the host cell vehicle. Horizontal movement of replicators can be either active or passive, reflecting whether or not the replicator encodes the means to mediate its own transfer from one cell to another. Some replicators also have an infectious extracellular state, thus separating viruses from other mobile elements. From the perspective of the cell vehicle, the different types of replicators form a continuum from genuinely mutualistic to completely parasitic replicators. This classification provides a general framework for dissecting prokaryotic systems into evolutionarily meaningful components.
Journal of Bacteriology | 2010
Matti Jalasvuori; Alice Pawlowski; Jaana K. H. Bamford
Viruses SH1 and P23-77, infecting archaeal Haloarcula species and bacterial Thermus species, respectively, were recently designated to form a novel viral lineage. In this study, the lineage is expanded to archaeal Halomicrobium and bacterial Meiothermus species by analysis of five genome-integrated elements that share the core genes with these viruses.