Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mattia Albiero is active.

Publication


Featured researches published by Mattia Albiero.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Number and Function of Endothelial Progenitor Cells as a Marker of Severity for Diabetic Vasculopathy

Gian Paolo Fadini; Saverio Sartore; Mattia Albiero; Ilenia Baesso; Ellen Murphy; Mirko Menegolo; Franco Grego; Saula Vigili de Kreutzenberg; Antonio Tiengo; Carlo Agostini; Angelo Avogaro

Objective—Peripheral arterial disease (PAD) is a threatening complication of diabetes. As endothelial progenitor cells (EPCs) are involved in neovasculogenesis and maintenance of vascular homeostasis, their impairment may have a role in the pathogenesis of diabetic vasculopathy. This study aimed to establish whether number and function of EPCs correlate with PAD severity in type 2 diabetic patients. Methods and Results—EPCs were defined by the expression of CD34, CD133 and KDR, and quantified by flow cytometry in 127 diabetic patients with and without PAD. PAD severity has been assessed as carotid atherosclerosis and clinical stage of leg atherosclerosis obliterans. Diabetic patients with PAD displayed a significant 53% reduction in circulating EPCs versus non-PAD patients, and EPC levels were negatively correlated with the degree of carotid stenosis and the stage of leg claudication. Moreover, the clonogenic and adhesion capacity of cultured EPCs were significantly lower in diabetic patients with PAD versus patients without. Conclusions—This study demonstrates that EPC decrease is related to PAD severity and that EPC function is altered in diabetic subjects with PAD, strengthening the pathogenetic role of EPC dysregulation in diabetic vasculopathy. EPC count may be considered a novel biological marker of peripheral atherosclerosis in diabetes.


Diabetes Care | 2010

The Oral Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Increases Circulating Endothelial Progenitor Cells in Patients With Type 2 Diabetes: Possible role of stromal-derived factor-1α

Gian Paolo Fadini; Elisa Boscaro; Mattia Albiero; Lisa Menegazzo; Vera Frison; Saula Vigili de Kreutzenberg; Carlo Agostini; Antonio Tiengo; Angelo Avogaro

OBJECTIVE Vasculoprotective endothelial progenitor cells (EPCs) are regulated by stromal-derived factor-1α (SDF-1α) and are reduced in type 2 diabetes. Because SDF-1α is a substrate of dipeptidyl-peptidase-4 (DPP-4), we investigated whether the DPP-4 inhibitor sitagliptin modulates EPC levels in type 2 diabetic patients. RESEARCH DESIGN AND METHODS This was a controlled, nonrandomized clinical trial comparing 4-week sitagliptin (n = 16) versus no additional treatment (n = 16) in addition to metformin and/or secretagogues in type 2 diabetic patients. We determined circulating EPC levels and plasma concentrations of SDF-1α, monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), and nitrites/nitrates. RESULTS There was no difference in clinical baseline data between the sitagliptin and control arms. After 4 weeks, as compared with control subjects, patients receiving sitagliptin showed a significant increase in EPCs and SDF-1α and a decrease in MCP-1. CONCLUSIONS Sitagliptin increases circulating EPCs in type 2 diabetic patients with concomitant upregulation of SDF-1α. This ancillary effect of DPP-4 inhibition might have potential favorable cardiovascular implications.


Atherosclerosis | 2008

Technical notes on endothelial progenitor cells : Ways to escape from the knowledge plateau

Gian Paolo Fadini; Ilenia Baesso; Mattia Albiero; Saverio Sartore; Carlo Agostini; Angelo Avogaro

In the last 10 years an increasing interest has been devoted to the study of endothelial progenitor cells (EPCs), a subtype of immature cells involved in endothelial repair and neoangiogenesis. EPCs have been discovered as a novel integrated part of the cardiovascular system, which plays a comprehensive role in tissue homeostasis. Consistently, alterations and/or reduction of the circulating EPC pool have been associated with different manifestations of cardiovascular disorders and atherosclerosis. This is why, the extent of the EPC pool is now considered a mirror of vascular health, while EPC reduction has become a surrogate biomarker of cardiovascular risk and of the ongoing vascular damage. Unfortunately, the methods used to study EPCs still lack standardization, and this is significantly decelerating progress in the field. In this review, we focus on some aspects related to the two methods used to assess circulating EPCs: flow cytometry and cell culture. We uncover the many traps hidden in the choice of the right protocol, and suggest the best solutions on the basis of evidence and background theories.


Diabetes Care | 2011

Endothelial Dysfunction in Diabetes: The role of reparatory mechanisms

Angelo Avogaro; Mattia Albiero; Lisa Menegazzo; Saula Vigili de Kreutzenberg; Gian Paolo Fadini

Type 2 diabetes is characterized by a two- to fourfold increased risk of cardiovascular disease. This is generally attributed to the adverse effects of hyperglycemia and oxidative stress on vascular biology. It has also been shown that patients with prediabetic conditions, such as impaired fasting glucose and impaired glucose tolerance, are at increased risk of cardiovascular disease as well (1). This result suggests that abnormalities in carbohydrate metabolism form a continuum that progressively worsens cardiovascular health; the first step of the adverse sequence of events that leads to the atherosclerotic process is thought to be endothelial dysfunction (2). Vascular endothelial cells play a major role in maintaining cardiovascular homeostasis. In addition to providing a physical barrier between the vessel wall and lumen, the endothelium secretes a number of mediators that regulate platelet aggregation, coagulation, fibrinolysis, and vascular tone. The term “endothelial dysfunction” refers to a condition in which the endothelium loses its physiological properties: the tendency to promote vasodilation, fibrinolysis, and anti-aggregation. Endothelial cells secrete several mediators that can alternatively mediate either vasoconstriction, such as endothelin-1 and thromboxane A2, or vasodilation, such as nitric oxide (NO), prostacyclin, and endothelium-derived hyperpolarizing factor. NO is the major contributor to endothelium-dependent relaxation in conduit arteries, whereas the contribution of endothelium-derived hyperpolarizing factor predominates in smaller resistance vessels. In patients with diabetes, endothelial dysfunction appears to be a consistent finding; indeed, there is general agreement that hyperglycemia and diabetes lead to an impairment of NO production and activity. The endothelium has a limited intrinsic capacity of self-repair, being built up by terminally differentiated cells with a low proliferative potential. That is why endothelial repair is accomplished through the contribution of circulating cells, namely endothelial progenitor cells (EPCs), in physiological and pathological conditions. In this review, we will outline the mechanisms of endothelial dysfunction …


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Rosiglitazone Reduces Glucose-Induced Oxidative Stress Mediated by NAD(P)H Oxidase via AMPK-Dependent Mechanism

Giulio Ceolotto; Alessandra Gallo; Italia Papparella; Lorenzo Franco; Ellen Murphy; Elisabetta Iori; Elisa Pagnin; Gian Paolo Fadini; Mattia Albiero; Andrea Semplicini; Angelo Avogaro

Objective—Hyperglycemia is the main determinant of long-term diabetic complications, mainly through induction of oxidative stress. NAD(P)H oxidase is a major source of glucose-induced oxidative stress. In this study, we tested the hypothesis that rosiglitazone (RSG) is able to quench oxidative stress initiated by high glucose through prevention of NAD(P)H oxidase activation. Methods and Results—Intracellular ROS were measured using the fluoroprobe TEMPO-9-AC in HUVECs exposed to control (5 mmol/L) and moderately high (10 mmol/L) glucose concentrations. NAD(P)H oxidase and AMPK activities were determined by Western blot. We found that 10 mmol/L glucose increased significantly ROS production in comparison with 5 mmol/L glucose, and that this effect was completely abolished by RSG. Interestingly, inhibition of AMPK, but not PPAR&ggr;, prevented this effect of RSG. AMPK phosphorylation by RSG was necessary for its ability to hamper NAD(P)H oxidase activation, which was indispensable for glucose-induced oxidative stress. Downstream of AMPK activation, RSG exerts antioxidative effects by inhibiting PKC. Conclusions—This study demonstrates that RSG activates AMPK which, in turn, prevents hyperactivity of NAD(P)H oxidase induced by high glucose, possibly through PKC inhibition. Therefore, RSG protects endothelial cells against glucose-induced oxidative stress with an AMPK-dependent and a PPAR&ggr;-independent mechanism.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Gender Differences in Endothelial Progenitor Cells and Cardiovascular Risk Profile The Role of Female Estrogens

Gian Paolo Fadini; Saula Vigili de Kreutzenberg; Mattia Albiero; Anna Coracina; Elisa Pagnin; Ilenia Baesso; Andrea Cignarella; Chiara Bolego; Mario Plebani; Giovanni Battista Nardelli; Saverio Sartore; Carlo Agostini; Angelo Avogaro

Objective—Endothelial progenitor cells (EPCs) participate in vascular homeostasis and angiogenesis. The aim of the present study was to explore EPC number and function in relation to cardiovascular risk, gender, and reproductive state. Methods and Results—As measured by flow-cytometry in 210 healthy subjects, CD34+KDR+ EPCs were higher in fertile women than in men, but were not different between postmenopausal women and age-matched men. These gender gradients mirrored differences in cardiovascular profile, carotid intima-media thickness, and brachial artery flow-mediated dilation. Moreover, EPCs and soluble c-kit ligand varied in phase with menstrual cycle in ovulatory women, suggesting cyclic bone marrow mobilization. Experimentally, hysterectomy in rats was followed by an increase in circulating EPCs. EPCs cultured from female healthy donors were more clonogenic and adherent than male EPCs. Treatment with 17&bgr;-estradiol stimulated EPC proliferation and adhesion, via estrogen receptors. Finally, we show that the proangiogenic potential of female EPCs was higher than that of male EPCs in vivo. Conclusions—EPCs are mobilized cyclically in fertile women, likely to provide a pool of cells for endometrial homeostasis. The resulting higher EPC levels in women than in men reflect the cardiovascular profile and could represent one mechanism of protection in the fertile female population.


Molecular metabolism | 2014

Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

Kenneth A. Dyar; Stefano Ciciliot; Lauren E. Wright; Rasmus S. Biensø; Guidantonio Malagoli Tagliazucchi; Vishal R. Patel; Mattia Forcato; Marcia Ivonne Peña Paz; Anders Gudiksen; Francesca Solagna; Mattia Albiero; Irene Moretti; Kristin Eckel-Mahan; Pierre Baldi; Paolo Sassone-Corsi; Rosario Rizzuto; Silvio Bicciato; Henriette Pilegaard; Bert Blaauw; Stefano Schiaffino

Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle.


Diabetes Care | 2013

Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans

Gian Paolo Fadini; Mattia Albiero; Saula Vigili de Kreutzenberg; Elisa Boscaro; Roberta Cappellari; Mariacristina Marescotti; Nicol Poncina; Carlo Agostini; Angelo Avogaro

OBJECTIVE Diabetes mellitus (DM) increases cardiovascular risk, at least in part, through shortage of vascular regenerative cells derived from the bone marrow (BM). In experimental models, DM causes morphological and functional BM alterations, but information on BM function in human DM is missing. Herein, we sought to assay mobilization of stem and proangiogenic cells in subjects with and without DM. RESEARCH DESIGN AND METHODS In a prospective trial (NCT01102699), we tested BM responsiveness to 5 μg/kg human recombinant granulocyte colony–stimulating factor (hrG-CSF) in 24 individuals with DM (10 type 1 and 14 type 2) and 14 individuals without DM. Before and 24 h after hrG-CSF, we quantified circulating stem/progenitor cells and total and differential white blood cell counts. We also evaluated in vivo the proangiogenic capacity of peripheral blood mononuclear cells using the Matrigel plug assay. RESULTS In response to hrG-CSF, levels of CD34+ cells and other progenitor cell phenotypes increased in subjects without DM. Patients with DM had significantly impaired mobilization of CD34+, CD133+, and CD34+CD133+ hematopoietic stem cells and CD133+KDR+ endothelial progenitors, independently of potential confounders. The in vivo angiogenic capacity of peripheral blood mononuclear cells significantly increased after hrG-CSF in control subjects without DM, but not in patients with DM. DM was also associated with the inability to upregulate CD26/DPP-4 on CD34+ cells, which is required for the mobilizing effect of granulocyte colony–stimulating factor. CONCLUSIONS Stem and proangiogenic cell mobilization in response to hrG-CSF is impaired in DM, possibly because of maladaptive CD26/DPP-4 regulation. These alterations may hamper tissue repair and favor the development of cardiovascular complications.


Circulation Research | 2011

Widespread Increase in Myeloid Calcifying Cells Contributes to Ectopic Vascular Calcification in Type 2 Diabetes

Gian Paolo Fadini; Mattia Albiero; Lisa Menegazzo; Elisa Boscaro; Saula Vigili de Kreutzenberg; Carlo Agostini; Anna Cabrelle; Gianni Binotto; Marcello Rattazzi; Elisa Bertacco; Roberta Bertorelle; Lorena Biasini; Monica Mion; Mario Plebani; Giulio Ceolotto; Annalisa Angelini; Chiara Castellani; Mirko Menegolo; Franco Grego; Stefanie Dimmeler; Florian Seeger; Andreas M. Zeiher; Antonio Tiengo; Angelo Avogaro

Rationale: Acquisition of a procalcific phenotype by resident or circulating cells is important for calcification of atherosclerotic plaques, which is common in diabetes. Objective: We aim to identify and characterize circulating calcifying cells, and to delineate a pathophysiological role for these cells in type 2 diabetes. Methods and Results: We demonstrate for the first time that a distinct subpopulation of circulating cells expressing osteocalcin and bone alkaline phosphatase (OC+BAP+) has procalcific activity in vitro and in vivo. The study of naïve patients with chronic myeloid leukemia indicated that OC+BAP+ cells have a myeloid origin. Myeloid calcifying OC+BAP+ cells (MCCs) could be differentiated from peripheral blood mononuclear cells, and generation of MCCs was closely associated with expression of the osteogenic transcription factor Runx2. In gender-mismatched bone marrow–transplanted humans, circulating MCCs had a much longer half-life compared with OC−BAP− cells, suggesting they belong to a stable cell repertoire. The percentage of MCCs was higher in peripheral blood and bone marrow of type 2 diabetic patients compared with controls but was lowered toward normal levels by optimization of glycemic control. Furthermore, diabetic carotid endoarterectomy specimens showed higher degree of calcification and amounts of cells expressing OC and BAP in the &agr;-smooth muscle actin–negative areas surrounding calcified nodules, where CD68+ macrophages colocalize. High glucose increased calcification by MCCs in vitro, and hypoxia may regulate MCC generation in vitro and in vivo. Conclusions: These data identify a novel type of blood-derived procalcific cells potentially involved in atherosclerotic calcification of diabetic patients.


Diabetes | 2014

Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1

Mattia Albiero; Nicol Poncina; Marc Tjwa; Stefano Ciciliot; Lisa Menegazzo; Giulio Ceolotto; Saula Vigili de Kreutzenberg; Rute Moura; Marco Giorgio; Pier Giuseppe Pelicci; Angelo Avogaro; Gian Paolo Fadini

Diabetes compromises the bone marrow (BM) microenvironment and reduces the number of circulating CD34+ cells. Diabetic autonomic neuropathy (DAN) may impact the BM, because the sympathetic nervous system is prominently involved in BM stem cell trafficking. We hypothesize that neuropathy of the BM affects stem cell mobilization and vascular recovery after ischemia in patients with diabetes. We report that, in patients, cardiovascular DAN was associated with fewer circulating CD34+ cells. Experimental diabetes (streptozotocin-induced and ob/ob mice) or chemical sympathectomy in mice resulted in BM autonomic neuropathy, impaired Lin−cKit+Sca1+ (LKS) cell and endothelial progenitor cell (EPC; CD34+Flk1+) mobilization, and vascular recovery after ischemia. DAN increased the expression of the 66-kDa protein from the src homology and collagen homology domain (p66Shc) and reduced the expression of sirtuin 1 (Sirt1) in mice and humans. p66Shc knockout (KO) in diabetic mice prevented DAN in the BM, and rescued defective LKS cell and EPC mobilization. Hematopoietic Sirt1 KO mimicked the diabetic mobilization defect, whereas hematopoietic Sirt1 overexpression in diabetes rescued defective mobilization and vascular repair. Through p66Shc and Sirt1, diabetes and sympathectomy elevated the expression of various adhesion molecules, including CD62L. CD62L KO partially rescued the defective stem/progenitor cell mobilization. In conclusion, autonomic neuropathy in the BM impairs stem cell mobilization in diabetes with dysregulation of the life-span regulators p66Shc and Sirt1.

Collaboration


Dive into the Mattia Albiero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge