Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mattia Algeri is active.

Publication


Featured researches published by Mattia Algeri.


Blood | 2017

Outcome of children with acute leukemia given HLA-haploidentical HSCT after αβ T-cell and B-cell depletion

Franco Locatelli; Pietro Merli; Daria Pagliara; Giuseppina Li Pira; Michela Falco; Daniela Pende; Roberto Rondelli; Barbarella Lucarelli; Letizia Pomponia Brescia; Riccardo Masetti; Giuseppe Maria Milano; Valentina Bertaina; Mattia Algeri; Rita Maria Pinto; Luisa Strocchio; Raffaella Meazza; Lavinia Grapulin; Rupert Handgretinger; Alessandro Moretta; Alice Bertaina; Lorenzo Moretta

Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-haploidentical relative (haplo-HSCT) is a suitable option for children with acute leukemia (AL) either relapsed or at high-risk of treatment failure. We developed a novel method of graft manipulation based on negative depletion of αβ T and B cells and conducted a prospective trial evaluating the outcome of children with AL transplanted with this approach. Eighty AL children, transplanted between September 2011 and September 2014, were enrolled in the trial. All children were given a fully myeloablative preparative regimen. Anti-T-lymphocyte globulin from day -5 to -3 was used for preventing graft rejection and graft-versus-host disease (GVHD); no patient received any posttransplantation GVHD prophylaxis. Two children experienced primary graft failure. The cumulative incidence of skin-only, grade 1-2 acute GVHD was 30%; no patient developed extensive chronic GVHD. Four patients died, the cumulative incidence of nonrelapse mortality being 5%, whereas 19 relapsed, resulting in a 24% cumulative incidence of relapse. With a median follow-up of 46 months for surviving patients, the 5-year probability of chronic GVHD-free, relapse-free survival (GRFS) is 71%. Total body irradiation-containing preparative regimen was the only variable favorably influencing relapse incidence and GRFS. The outcomes of these 80 patients are comparable to those of 41 and 51 children given transplantation from an HLA-identical sibling or a 10/10 allelic-matched unrelated donor in the same period. These data indicate that haplo-HSCT after αβ T- and B-cell depletion represents a competitive alternative for children with AL in need of urgent allograft. This trial was registered at www.clinicaltrials.gov as #NCT01810120.


British Journal of Haematology | 2017

The combination of bortezomib with chemotherapy to treat relapsed/refractory acute lymphoblastic leukaemia of childhood

Alice Bertaina; Luciana Vinti; Luisa Strocchio; Stefania Gaspari; Roberta Caruso; Mattia Algeri; Valentina Coletti; Carmelo Gurnari; Mariateresa Romano; Maria Giuseppina Cefalo; Katia Girardi; Valentina Trevisan; Valentina Bertaina; Pietro Merli; Franco Locatelli

Achieving complete remission (CR) in childhood relapsed/refractory acute lymphoblastic leukaemia (ALL) is a difficult task. Bortezomib, a proteasome inhibitor, has in vitro activity against ALL blasts. A phase I‐II trial, reported by the Therapeutic Advances in Childhood Leukaemia and Lymphoma (TACL) consortium, demonstrated that bortezomib with chemotherapy has acceptable toxicity and remarkable activity in patients with relapsed ALL failing 2–3 previous regimens. We evaluated bortezomib in combination with chemotherapy in 30 and 7 children with B‐cell precursor (BCP) and T‐cell ALL, respectively. Bortezomib (1·3 mg/m2/dose) was administered intravenously on days 1, 4, 8, and 11. Chemotherapy agents were the same as those used in the TACL trial, consisting of dexamethasone, doxorubicin, vincristine and pegylated asparaginase. Three patients (8·1%) died due to infections. Twenty‐seven patients (72·9%) achieved CR or CR with incomplete platelet recovery (CRp). Fourteen had minimal residual disease (MRD) lower than 0·1%. Twenty‐two of 30 BCP‐ALL patients (73·3%) and 5/7 patients (71%) with T‐cell ALL achieved CR/CRp. The 2‐year overall survival (OS) is 31·3%; CR/CRp patients with an MRD response had a remarkable 2‐year OS of 68·4%. These data confirm that the combination of bortezomib with chemotherapy is a suitable/effective option for childhood relapsed/refractory ALL.


Journal of Pediatric Hematology Oncology | 2015

Successful T-cell-depleted Haploidentical Hematopoietic Stem Cell Transplantation in a Child with Dyskeratosis Congenita after a Fludarabine-based Conditioning Regimen

Mattia Algeri; Patrizia Comoli; Luisa Strocchio; Cesare Perotti; Franco Corbella; Claudia Del Fante; Ambrogia Baio; Giovanna Giorgiani; Antonella Gurrado; Elisa Accornero; Chiara Cugno; Andrea Pession; Marco Zecca

Allogeneic hematopoietic stem cell transplantation (HSCT) is the only cure for marrow failure associated with dyskeratosis congenita (DC). Data on transplants from alternative donors are limited. We describe a boy with DC and severe aplastic anemia who underwent haploidentical T-cell depleted HSCT using a reduced-intensity conditioning regimen. He underwent engraftment without toxicity or GVHD. His posttransplant course was complicated by EBV reactivation, treated with rituximab and EBV-specific T lymphocytes. After 26 months, he is in complete chimerism, with normal blood count and no sign of GVHD or pulmonary dysfunction. To the best of our knowledge, this is the first report of DC successfully treated with allogeneic HSCT from a haploidentical family donor.


British Journal of Haematology | 2015

Comprehensive characterization of mesenchymal stromal cells from patients with Fanconi anaemia

Melissa Mantelli; M. A. Avanzini; Vittorio Rosti; Daniela Ingo; Antonella Conforti; Francesca Novara; Giulia Arrigo; Marina Boni; Rita Zappatore; Elisa Lenta; Antonia Moretta; Gloria Acquafredda; Annalisa De Silvestri; Valentina Cirillo; Elisa Cicchetti; Mattia Algeri; Luisa Strocchio; Luciana Vinti; Nadia Starc; Simone Biagini; Pietro Sirleto; Paolo Bernasconi; Orsetta Zuffardi; E Maserati; Rita Maccario; Marco Zecca; Franco Locatelli; Maria Ester Bernardo

Fanconi anaemia (FA) is an inherited disorder characterized by pancytopenia, congenital malformations and a predisposition to develop malignancies. Alterations in the haematopoietic microenvironment of FA patients have been reported, but little is known regarding the components of their bone marrow (BM) stroma. We characterized mesenchymal stromal cells (MSCs) isolated from BM of 18 FA patients both before and after allogeneic haematopoietic stem cell transplantation (HSCT). Morphology, fibroblast colony‐forming unit (CFU‐F) ability, proliferative capacity, immunophenotype, differentiation potential, ability to support long‐term haematopoiesis and immunomodulatory properties of FA‐MSCs were analysed and compared with those of MSCs expanded from 15 age‐matched healthy donors (HD‐MSCs). FA‐MSCs were genetically characterized through conventional karyotyping, diepoxybutane‐test and array‐comparative genomic hybridization. FA‐MSCs generated before and after HSCT were compared. Morphology, immunophenotype, differentiation potential, ability in vitro to inhibit mitogen‐induced T‐cell proliferation and to support long‐term haematopoiesis did not differ between FA‐MSCs and HD‐MSCs. CFU‐F ability and proliferative capacity of FA‐MSCs isolated after HSCT were significantly lower than those of HD‐MSCs. FA‐MSCs reached senescence significantly earlier than HD‐MSCs and showed spontaneous chromosome fragility. Our findings indicate that FA‐MSCs are defective in their ability to survive in vitro and display spontaneous chromosome breakages; whether these defects are involved in pathophysiology of BM failure syndromes deserves further investigation.


Immunology Letters | 2015

Mesenchymal stromal cells and chronic inflammatory bowel disease

Mattia Algeri; Antonella Conforti; Angela Pitisci; Nadia Starc; Luigi Tomao; Maria Ester Bernardo; Franco Locatelli

Recent experimental findings have shown the ability of mesenchymal stromal cells (MSCs) to home to damaged tissues and to produce paracrine factors with anti-inflammatory properties, potentially resulting in reduction of inflammation and functional recovery of the damaged tissues. Prompted by these intriguing properties and on the basis of encouraging preclinical data, MSCs are currently being studied in several immune-mediated disorders. Inflammatory bowel diseases (IBD) represent a setting in which MSCs-based therapy has been extensively investigated. Phase I and II studies have documented the safety and feasibility of MSCs. However, efficacy results have so far been conflicting. In this review, we will discuss the biologic rationale that makes MSCs a promising therapeutic tool for IBD, and analyze recent experimental and clinical findings, highlighting current limitations and future perspectives of MSCs-related immunotherapy for IBD.


Expert Review of Clinical Immunology | 2017

Remestemcel-L for the treatment of graft versus host disease

Franco Locatelli; Mattia Algeri; Valentina Trevisan; Alice Bertaina

ABSTRACT Introduction: Remestemcel-L, a third-party, off-the-shelf preparation of bone-marrow derived mesenchymal stromal cells (MSCs), has been developed for experimental use in acute graft-versus-host disease (aGvHD) and other immune-mediated conditions. Several preclinical and clinical studies have indeed suggested the potential of human mesenchymal stromal cells (MSCs) as an effective treatment for steroid-refractory aGvHD. However, an unambiguous demonstration of efficacy is still lacking. Areas covered: This review critically examines the biologic rationale supporting MSCs use in aGvHD and analyzes the results of published clinical trials in this setting, with a particular focus on the potential benefits and drawbacks of Remestemcel-L. For this purpose, a systematic literature search was performed in PubMed using the following keywords: ‘mesenchymal stromal cells’, ‘mesenchymal progenitor cells’, ‘multipotent stromal cells’, ‘mesenchymal cells’, ‘MSC’, ‘Remestemcel-L’, ‘Prochymal’, and ‘graft-versus-host disease’ or ‘GvHD’. Expert commentary: Remestemcel-L represents a promising alternative to second-line immunosuppressive agents for the treatment of steroid-refractory aGvHD. Despite the safety and the favorable risk/benefit profile of this cell product, which has been demonstrated in several phase I-II studies, large and prospective randomized trials are required to confirm its efficacy in aGvHD and to define the optimal schedule of administration in terms of infusion timing, cell dose and pharmacological synergism.


Current Hematologic Malignancy Reports | 2017

T Cell-Depleted and T Cell-Replete HLA-Haploidentical Stem Cell Transplantation for Non-malignant Disorders

Alice Bertaina; Angela Pitisci; Matilde Sinibaldi; Mattia Algeri

Purpose of ReviewHematopoietic stem cell transplantation (HSCT) is a treatment option for children with malignant and non-malignant disorders as well as an expanding number of inherited disorders. However, only a limited portion of patients in the need of an allograft have an HLA-compatible, either related or unrelated, donor. Haploidentical HSCT is now considered a valid treatment option, especially in view of the recent insights in terms of graft manipulation. This review will offer an overview of clinical results obtained through the use of haploidentical HSCT in non-malignant diseases. We will analyze major advantages and drawbacks of both T cell depleted and unmanipulated HSCT, discussing future challenges for further improving patients’ outcome.Recent FindingsT cell depletion (TCD) aims to reduce the morbidity and mortality associated with graft-versus-host disease (GvHD). However, the delayed immune recovery and the risk of graft failure still remain potential problems. In the last years, the use of post-transplant cyclophosphamide has been shown to be an alternative effective strategy to prevent GvHD in recipients of haploidentical HSCT.SummaryRecent data suggest that both T cell depleted and T cell-replete haplo-HSCT are suitable options to treat children with several types of non-malignant disorders lacking an HLA-identical donor.


Scientific Reports | 2017

Biological and functional characterization of bone marrow-derived mesenchymal stromal cells from patients affected by primary immunodeficiency

Nadia Starc; Daniela Ingo; Antonella Conforti; Valeria Rossella; Luigi Tomao; Angela Pitisci; Fabiola De Mattia; Immacolata Brigida; Mattia Algeri; Mauro Montanari; Giuseppe Palumbo; Pietro Merli; Paolo Rossi; Alessandro Aiuti; Franco Locatelli; Maria Ester Bernardo

Mesenchymal stromal cells (MSCs) represent a key component of bone marrow (BM) microenvironment and display immune-regulatory properties. We performed a detailed analysis of biological/functional properties of BM-MSCs derived from 33 pediatric patients affected by primary immune-deficiencies (PID-MSCs): 7 Chronic Granulomatous Disease (CGD), 15 Wiskott-Aldrich Syndrome (WAS), 11 Severe Combined Immunodeficiency (SCID). Results were compared with MSCs from 15 age-matched pediatric healthy-donors (HD-MSCs). Clonogenic and proliferative capacity, differentiation ability, immunophenotype, immunomodulatory properties were analyzed. WB and RT-qPCR for CYBB, WAS and ADA genes were performed. All PID-MSCs displayed clonogenic and proliferative capacity, morphology and immunophenotype comparable with HD-MSCs. PID-MSCs maintained the inhibitory effect on T- and B-lymphocyte proliferation, except for decreased inhibitory ability of SCID-MSCs at MSC:PBMC ratio 1:10. While HD- and CGD-MSCs were able to inhibit monocyte maturation into immature dendritic cells, in SCID- and WAS-MSCs this ability was reduced. After Toll-like Receptor priming, PID-MSCs displayed in vitro an altered gene expression profile of pro- and anti-inflammatory soluble factors. PID-MSCs displayed lower PPARγ levels and WAS- and SCID-MSCs higher levels of key osteogenic markers, as compared with HD-MSCs. Our results indicate that PID-MSCs may be defective in some functional abilities; whether these defects contribute to disease pathophysiology deserves further investigation.


Oncotarget | 2016

Resistance to neoplastic transformation of ex-vivo expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress

Antonella Conforti; Nadia Starc; Simone Biagini; Luigi Tomao; Angela Pitisci; Mattia Algeri; Pietro Sirleto; Antonio Novelli; Giulia Grisendi; Olivia Candini; Cintia Carella; Massimo Dominici; Franco Locatelli; Maria Ester Bernardo

The risk of malignant transformation of ex-vivo expanded human mesenchymal stromal cells (huMSCs) has been debated in the last years; however, the biosafety of these cells after exposure to supramaximal physical and chemical stress has never been systematically investigated. We established an experimental in vitro model to induce supramaximal physical (ionizing radiation, IR) and chemical (starvation) stress on ex-vivo expanded bone marrow (BM)-derived huMSCs and investigated their propensity to undergo malignant transformation. To this aim, we examined MSC morphology, proliferative capacity, immune-phenotype, differentiation potential, immunomodulatory properties and genetic profile before and after stressor exposure. Furthermore, we investigated the cellular mechanisms underlying MSC response to stress. MSCs were isolated from 20 healthy BM donors and expanded in culture medium supplemented with 5% platelet lysate (PL) up to passage 2 (P2). At this stage, MSCs were exposed first to escalating doses of IR (30, 100, 200 Gy) and then to starvation culture conditions (1% PL). With escalating doses of radiation, MSCs lost their typical spindle-shaped morphology, their growth rate markedly decreased and eventually stopped (at P4-P6) by reaching early senescence. Irradiated and starved MSCs maintained their typical immune-phenotype, ability to differentiate into adipocytes/osteoblasts and to inhibit mitogen-induced T-cell proliferation. The study of the genetic profile of irradiated/starved MSCs did not show any alteration. While the induction of supramaximal stress triggered production of ROS and activation of DNA damage response pathway via multiple mechanisms, our data indicate that irradiated/starved MSCs, although presenting altered morphology/growth rate, do not display increased propensity for malignant transformation.


Expert Review of Hematology | 2018

Novel approaches to diagnosis and treatment of Juvenile Myelomonocytic Leukemia

Franco Locatelli; Mattia Algeri; Pietro Merli; Luisa Strocchio

ABSTRACT Introduction: Juvenile myelomonocytic leukemia (JMML) is a clonal hematopoietic disorder of infancy/early childhood, resulting from oncogenic mutations in genes involved in the Ras pathway. As JMML often exhibits an aggressive course, the timing of diagnosis and treatment is critical to outcome. Areas covered: This review summarizes current approaches to diagnosis and treatment of JMML, highlighting most recent insights into genetic and epigenetic mechanisms underlying the disease, and providing an overview of novel potential therapeutic strategies. Expert commentary: At present, allogeneic HSCT remains the only potentially effective therapy, being able to cure more than 50% of patients, relapse representing the main cause of treatment failure. Prompt HSCT is recommended for all children with NF1, somatic PTPN11 and KRAS mutations, and for most children with somatic NRAS mutations. Conversely, a ‘watch and wait’ strategy should be adopted in children with germline CBL mutations, specific somatic NRAS mutation, and in Noonan syndrome patients, since spontaneous resolution has been reported to occur. Novel drugs targeting relevant nodes of JMML leukemogenesis have been explored in pre-HSCT window or at relapse. The use of 5-azacytidine, a DNA-hypomethylating agent reported to induce hematologic and molecular remission in some JMML children, is currently being investigated in clinical trials.

Collaboration


Dive into the Mattia Algeri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Bertaina

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Luisa Strocchio

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pietro Merli

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Pitisci

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadia Starc

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daria Pagliara

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge