Mattia Allieta
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mattia Allieta.
Journal of the American Chemical Society | 2012
Alberto Naldoni; Mattia Allieta; S. Santangelo; Marcello Marelli; Filippo Fabbri; S. Cappelli; Claudia L. Bianchi; Rinaldo Psaro; Vladimiro Dal Santo
The increasing need for new materials capable of solar fuel generation is central in the development of a green energy economy. In this contribution, we demonstrate that black TiO(2) nanoparticles obtained through a one-step reduction/crystallization process exhibit a bandgap of only 1.85 eV, which matches well with visible light absorption. The electronic structure of black TiO(2) nanoparticles is determined by the unique crystalline and defective core/disordered shell morphology. We introduce new insights that will be useful for the design of nanostructured photocatalysts for energy applications.
ACS Applied Materials & Interfaces | 2014
Marcello Marelli; Alberto Naldoni; Alessandro Minguzzi; Mattia Allieta; Tersilla Virgili; Guido Scavia; Sandro Recchia; Rinaldo Psaro; Vladimiro Dal Santo
A new nanostructured α-Fe2O3 photoelectrode synthesized through plasma-enhanced chemical vapor deposition (PE-CVD) is presented. The α-Fe2O3 films consist of nanoplatelets with (001) crystallographic planes strongly oriented perpendicular to the conductive glass surface. This hematite morphology was never obtained before and is strictly linked to the method being used for its production. Structural, electronic, and photocurrent measurements are employed to disclose the nanoscale features of the photoanodes and their relationships with the generated photocurrent. α-Fe2O3 films have a hierarchical morphology consisting of nanobranches (width ∼10 nm, length ∼50 nm) that self-organize in plume-like nanoplatelets (350-700 nm in length). The amount of precursor used in the PE-CVD process mainly affects the nanoplatelets dimension, the platelets density, the roughness, and the photoelectrochemical (PEC) activity. The highest photocurrent (j = 1.39 mA/cm(2) at 1.55 VRHE) is shown by the photoanodes with the best balance between the platelets density and roughness. The so obtained hematite hierarchical morphology assures good photocurrent performance and appears to be an ideal platform for the construction of customized multilayer architecture for PEC water splitting.
Physical Review B | 2012
Mattia Allieta; Marco Scavini; L. J. Spalek; Valerio Scagnoli; H. C. Walker; C. Panagopoulos; Siddharth S. Saxena; T. Katsufuji; Claudio Mazzoli
Up to now the crystallographic structure of the magnetoelectric perovskite EuTiO3 was considered to remain cubic down to low temperature. Here we present high resolution synchrotron X-ray powder diffraction data showing the existence of a structural phase transition, from cubic Pm-3m to tetragonal I4/mcm, involving TiO6 octahedra tilting, in analogy to the case of SrTiO3. The temperature evolution of the tilting angle indicates a second-order phase transition with an estimated Tc=235K. This critical temperature is well below the recent anomaly reported by specific heat measurement at TA\sim282K. By performing atomic pair distribution function analysis on diffraction data we provide evidence of a mismatch between the local (short-range) and the average crystallographic structures in this material. Below the estimated Tc, the average model symmetry is fully compatible with the local environment distortion but the former is characterized by a reduced value of the tilting angle compared to the latter. At T=240K data show the presence of local octahedra tilting identical to the low temperature one, while the average crystallographic structure remains cubic. On this basis, we propose intrinsic lattice disorder to be of fundamental importance in the understanding of EuTiO3 properties.
Physical Review B | 2013
Mattia Allieta; Marco Scavini; Leonardo Lo Presti; M. Coduri; Laura Loconte; S. Cappelli; Cesare Oliva; Paolo Ghigna; P. Pattison; Valerio Scagnoli
We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining highresolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at T-CO=247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At T-min approximate to 1.2T(CO), the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at approximate to T-CO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above T-CO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below T-CO. Below T approximate to 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.
Zeitschrift Fur Kristallographie | 2012
Mauro Coduri; Michela Brunelli; Marco Scavini; Mattia Allieta; Paolo Masala; Lucia Capogna; Henry E. Fischer; Claudio Ferrero
Abstract Rare Earth doped ceria materials (Ce1–xRExO2–x/2) are widely studied for their application in solid oxide fuel cell devices. In this work, RE(Yb, Y, Nd, La)-doped ceria samples at constant (x = 0.25) doping rate were subjected to a combined synchrotron radiation and neutron powder diffraction study. The dopants were chosen in order to cover a wide range of dopant-ionic radii. The effect of doping on the average structure is investigated using conventional Rietveld analysis, while the Pair Distribution Function technique is used to explore the spatial extent of disorder as well as the local structure. Two models for mapping the local structure, in terms of oxygen relaxation and nano-phase separation, are presented.
IUCrJ | 2015
Marco Scavini; Mauro Coduri; Mattia Allieta; Paolo Masala; S. Cappelli; Cesare Oliva; Michela Brunelli; Francesco Orsini; Claudio Ferrero
Pair distribution function analysis up to tens of nanometres allows probing of the structural changes in Ce1−xGdxO2−x/2 solid solutions at varying gadolinium concentrations. Dopant ions and oxygen vacancies form extended Gd2O3-like clusters (droplets) and nanodomains which, on increasing the Gd concentration, percolate and cause a long-range phase transformation. A general crystallographic rationale is presented which could be adopted to describe phase transformations in highly doped materials.
Journal of Physics: Conference Series | 2012
Mauro Coduri; Marina Scavini; Mattia Allieta; M Brunelli; C. Ferrero
Yttrium doped ceria materials (Ce1−xYxO2−x/2) are widely studied for their application in Solid Oxide Fuel Cells devices. An anomalous decrease in the isothermal ionic conductivity at increasing Y3+ concentration above a critical value has been observed and attributed to the formation of defect clusters / domains at the nanometric scale, the crystallographic structure of which is still under debate. In this context we present a combined Synchrotron Radiation and Neutron Powder Diffraction study. In particular, neutrons allow to determine accurately oxygen related parameters, the contribution of which in terms of X-ray scattering power is almost negligible when compared to that of cations. The effect of doping on the average structure is investigated using conventional Rietveld analysis, while the Pair Distribution Function (PDF) technique is used to explore structural distortions and the spatial extent of disorder as well. The local structure observed in the real space is not consistent with the mean crystallographic one and is better modeled considering a biphasic model.
Inorganic Chemistry | 2012
Cesare Oliva; Mattia Allieta; Marco Scavini; Cesare Biffi; Ilenia Rossetti; Lucio Forni
The physical-chemical properties of some nanostructured perovskite-like catalysts of general formula La(1-x)M(x)MnO(3+δ) (M = Ce, Sr) have been investigated, in particular by using the electron paramagnetic resonance (EPR) technique. We show that the interplay between the -O-Mn(3+)-O-Mn(4+)-O- electron double-exchange and the electron mobility is strictly dependent on the dopant nature and the annealing conditions in air. A relationship between the observed properties of these samples and their activity in the methane flameless catalytic combustion is proposed.
Physical Chemistry Chemical Physics | 2013
Ilenia Rossetti; Mattia Allieta; Cesare Biffi; Marco Scavini
Methods and models describing oxygen diffusion and desorption in oxides have been developed for slightly defective and well crystallised bulky materials. Does nanostructuring change the mechanism of oxygen mobility? In such a case, models should be properly checked and adapted to take into account new material properties. In order to do so, temperature programmed oxygen desorption and thermogravimetric analysis, either in isothermal or ramp mode, have been used to investigate some nanostructured La1-xAxMnO3±δ samples (A = Sr and Ce, 20-60 nm particle size) with perovskite-like structure. The experimental data have been elaborated by means of different models to define a set of kinetic parameters able to describe oxygen release properties and oxygen diffusion through the bulk. Different rate-determining steps have been identified, depending on the temperature range and oxygen depletion of the material. In particular, oxygen diffusion was shown to be rate-limiting at low temperature and at low defect concentration, whereas oxygen recombination at the surface seems to be the rate-controlling step at high temperature. However, the oxygen recombination step is characterised by an activation energy much lower than that for diffusion. In the present paper oxygen transport in nanosized materials is quantified by making use of widely diffused experimental techniques and by critically adapting to nanoparticles suitably chosen models developed for bulk materials.
Spectroscopy | 2015
Cesare Oliva; Francesco Orsini; S. Cappelli; Paolo Arosio; Mattia Allieta; Mauro Coduri; Marco Scavini
A combined electron spin resonance (ESR) and atomic force microscopy (AFM) study on Ce1−xGdxO2−x/2 samples is here presented, aimed at investigating the evolution of the ESR spectral shape as a function of in a wide composition range. At low , the spectrum is composed of features at ; 2.8; 6. With increasing , this pattern merges into a single broad ESR curve, which assumes a Dysonian-shaped profile at , whereas, at these values, AFM measurements show an increasing surface roughness. It is suggested that the last could cause the formation of surface polaritons at the origin of the particular ESR spectral profile observed at these high Gd doping levels.