Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mattias Carlström is active.

Publication


Featured researches published by Mattias Carlström.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice

Mattias Carlström; Filip J. Larsen; Thomas Nyström; Michael Hezel; Sara Borniquel; Eddie Weitzberg; Jon O. Lundberg

The metabolic syndrome is a clustering of risk factors of metabolic origin that increase the risk for cardiovascular disease and type 2 diabetes. A proposed central event in metabolic syndrome is a decrease in the amount of bioavailable nitric oxide (NO) from endothelial NO synthase (eNOS). Recently, an alternative pathway for NO formation in mammals was described where inorganic nitrate, a supposedly inert NO oxidation product and unwanted dietary constituent, is serially reduced to nitrite and then NO and other bioactive nitrogen oxides. Here we show that several features of metabolic syndrome that develop in eNOS-deficient mice can be reversed by dietary supplementation with sodium nitrate, in amounts similar to those derived from eNOS under normal conditions. In humans, this dose corresponds to a rich intake of vegetables, the dominant dietary nitrate source. Nitrate administration increased tissue and plasma levels of bioactive nitrogen oxides. Moreover, chronic nitrate treatment reduced visceral fat accumulation and circulating levels of triglycerides and reversed the prediabetic phenotype in these animals. In rats, chronic nitrate treatment reduced blood pressure and this effect was also present during NOS inhibition. Our results show that dietary nitrate fuels a nitrate–nitrite–NO pathway that can partly compensate for disturbances in endogenous NO generation from eNOS. These findings may have implications for novel nutrition-based preventive and therapeutic strategies against cardiovascular disease and type 2 diabetes.


Cardiovascular Research | 2011

Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension

Mattias Carlström; A. Erik G. Persson; Erik G. Larsson; Michael Hezel; Peter G. Scheffer; Tom Teerlink; Eddie Weitzberg; Jon O. Lundberg

AIMS Reduced bioavailability of endogenous nitric oxide (NO) is a central pathophysiological event in hypertension and other cardiovascular diseases. Recently, it was demonstrated that inorganic nitrate from dietary sources is converted in vivo to form nitrite, NO, and other bioactive nitrogen oxides. We tested the hypothesis that dietary inorganic nitrate supplementation may have therapeutic effects in a model of renal and cardiovascular disease. METHODS AND RESULTS Sprague-Dawley rats subjected to unilateral nephrectomy and chronic high-salt diet from 3 weeks of age developed hypertension, cardiac hypertrophy and fibrosis, proteinuria, and histological as well as biochemical signs of renal damage and oxidative stress. Simultaneous nitrate treatment (0.1 or 1 mmol nitrate kg⁻¹ day⁻¹), with the lower dose resembling the nitrate content of a diet rich in vegetables, attenuated hypertension dose-dependently with no signs of tolerance. Nitrate treatment almost completely prevented proteinuria and histological signs of renal injury, and the cardiac hypertrophy and fibrosis were attenuated. Mechanistically, dietary nitrate restored the tissue levels of bioactive nitrogen oxides and reduced the levels of oxidative stress markers in plasma (malondialdehyde) and urine (Class VI F2-isoprostanes and 8-hydroxy-2-deoxyguanosine). In addition, the increased circulating and urinary levels of dimethylarginines (ADMA and SDMA) in the hypertensive rats were normalized by nitrate supplementation. CONCLUSION Dietary inorganic nitrate is strongly protective in this model of renal and cardiovascular disease. Future studies will reveal if nitrate contributes to the well-known cardioprotective effects of a diet rich in vegetables.


Cardiovascular Research | 2011

Roles of dietary inorganic nitrate in cardiovascular health and disease

Jon O. Lundberg; Mattias Carlström; Filip J. Larsen; Eddie Weitzberg

Inorganic nitrate from dietary and endogenous sources is emerging as a substrate for in vivo generation of nitric oxide (NO) and other reactive nitrogen oxides. Dietary amounts of nitrate clearly have robust NO-like effects in humans, including blood pressure reduction, inhibition of platelet aggregation, and vasoprotective activity. In animal models, nitrate protects against ischaemia-reperfusion injuries and several other types of cardiovascular disorders. In addition, nitrate most surprisingly decreases whole body oxygen cost during exercise with preserved or even enhanced maximal performance. Oxidative stress and reduced NO bioavailability are critically linked to development of hypertension and other forms of cardiovascular diseases. Mechanistically, a central target for the effects of nitrate and its reaction products seems to be the mitochondrion and modulation of oxidative stress. All in vivo effects of nitrate are achievable with amounts corresponding to a rich intake of vegetables, which are particularly rich in this anion. A theory is now emerging suggesting nitrate as an active component in vegetables contributing to the beneficial health effects of this food group, including protection against cardiovascular disease and type-2 diabetes.


Free Radical Biology and Medicine | 2009

Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash.

Joel Petersson; Mattias Carlström; Olof Schreiber; Mia Phillipson; Gustaf Christoffersson; A Jägare; Stefan Roos; Emmelie Å. Jansson; A. Erik G. Persson; Jon O. Lundberg; Lena Holm

Recently, it has been suggested that the supposedly inert nitrite anion is reduced in vivo to form bioactive nitric oxide with physiological and therapeutic implications in the gastrointestinal and cardiovascular systems. Intake of nitrate-rich food such as vegetables results in increased levels of circulating nitrite in a process suggested to involve nitrate-reducing bacteria in the oral cavity. Here we investigated the importance of the oral microflora and dietary nitrate in regulation of gastric mucosal defense and blood pressure. Rats were treated twice daily with a commercial antiseptic mouthwash while they were given nitrate-supplemented drinking water. The mouthwash greatly reduced the number of nitrate-reducing oral bacteria and as a consequence, nitrate-induced increases in gastric NO and circulating nitrite levels were markedly reduced. With the mouthwash the observed nitrate-induced increase in gastric mucus thickness was attenuated and the gastroprotective effect against an ulcerogenic compound was lost. Furthermore, the decrease in systemic blood pressure seen during nitrate supplementation was now absent. These results suggest that oral symbiotic bacteria modulate gastrointestinal and cardiovascular function via bioactivation of salivary nitrate. Excessive use of antiseptic mouthwashes may attenuate the bioactivity of dietary nitrate.


Physiological Reviews | 2015

Renal Autoregulation in Health and Disease

Mattias Carlström; Christopher S. Wilcox; William J. Arendshorst

Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.


The FASEB Journal | 2013

Aspirin-triggered resolvin D1 prevents surgery-induced cognitive decline

Niccolò Terrando; Marta Gómez-Galán; Ting Yang; Mattias Carlström; Daniel Gustavsson; Ralph E. Harding; Maria Lindskog; Lars I. Eriksson

Hospitalization for major surgery or critical illness often associates with cognitive decline. Inflammation and dysregulation of the innate immune system can exert broad effects in the periphery and central nervous system (CNS), yet the mechanisms underlying memory impairment after surgery remain poorly understood and without effective therapy. Endogenous regulation of acute inflammation is providing novel approaches to treat several disease states including sepsis, pain, obesity and diabetes. Resolvins are potent endogenous lipid mediators biosynthesized during the resolution phase of acute inflammation that display immunoresolvent actions. Here, using a mouse model of surgery‐induced cognitive decline we report that orthopedic surgery affects hippocampal neuronal‐glial function, including synaptic transmission and plasticity. Systemic prophylaxis with aspirin‐triggered resolvin D1 (AT‐RvD1: 7S,8R,17R‐trihydroxy‐4Z,9E,11E,13Z,15E,19Z‐docosahexaenoic acid, as little as 100 ng dose per mouse) improved memory decline following surgery and abolished signs of synaptic dysfunction. Moreover, delayed administration 24 h after surgery also attenuated signs of neuronal dysfunction postoperatively. AT‐RvD1 also limited peripheral damage by modulating the release of systemic interleukin (IL)‐6 and improved other clinical markers of tissue injury. Collectively, these results demonstrate a novel role of AT‐RvD1 in modulating the proinflammatory milieu after aseptic injury and protecting the brain from neuroinflammation, synaptic dysfunction and cognitive decline. These findings provide novel and safer approaches to treat postoperative cognitive decline and potentially other forms of memory dysfunctions.—Terrando, N., Gómez‐Galán, M., Yang, T., Carlström, M., Gustavsson, D., Harding, R. E., Lindskog, M., Eriksson, L. I., Aspirin‐triggered resolvin D1 prevents surgery‐induced cognitive decline. FASEB J. 27, 3564–3571 (2013). www.fasebj.org


Free Radical Biology and Medicine | 2013

Microbial regulation of host hydrogen sulfide bioavailability and metabolism.

Xinggui Shen; Mattias Carlström; Sara Borniquel; Cecilia Jädert; Christopher G. Kevil; Jon O. Lundberg

Hydrogen sulfide (H2S), generated through various endogenous enzymatic and nonenzymatic pathways, is emerging as a regulator of physiological and pathological events throughout the body. Bacteria in the gastrointestinal tract also produce significant amounts of H2S that regulates microflora growth and virulence responses. However, the impact of the microbiota on host global H2S bioavailability and metabolism remains unknown. To address this question, we examined H2S bioavailability in its various forms (free, acid labile, or bound sulfane sulfur), cystathionine γ-lyase (CSE) activity, and cysteine levels in tissues from germ-free versus conventionally housed mice. Free H2S levels were significantly reduced in plasma and gastrointestinal tissues of germ-free mice. Bound sulfane sulfur levels were decreased by 50-80% in germ-free mouse plasma and adipose and lung tissues. Tissue CSE activity was significantly reduced in many organs from germ-free mice, whereas tissue cysteine levels were significantly elevated compared to conventional mice. These data reveal that the microbiota profoundly regulates systemic bioavailability and metabolism of H2S.


Hypertension | 2015

NADPH Oxidase in the Renal Microvasculature Is a Primary Target for Blood Pressure–Lowering Effects by Inorganic Nitrate and Nitrite

Xiang Gao; Ting Yang; Ming Liu; Maria Peleli; Christa Zollbrecht; Eddie Weitzberg; Jon O. Lundberg; A. Erik G. Persson; Mattias Carlström

Renal oxidative stress and nitric oxide (NO) deficiency are key events in hypertension. Stimulation of a nitrate–nitrite–NO pathway with dietary nitrate reduces blood pressure, but the mechanisms or target organ are not clear. We investigated the hypothesis that inorganic nitrate and nitrite attenuate reactivity of renal microcirculation and blood pressure responses to angiotensin II (ANG II) by modulating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NO bioavailability. Nitrite in the physiological range (10−7–10−5 mol/L) dilated isolated perfused renal afferent arterioles, which were associated with increased NO. Contractions to ANG II (34%) and simultaneous NO synthase inhibition (56%) were attenuated by nitrite (18% and 26%). In a model of oxidative stress (superoxide dismutase-1 knockouts), abnormal ANG II–mediated arteriolar contractions (90%) were normalized by nitrite (44%). Mechanistically, effects of nitrite were abolished by NO scavenger and xanthine oxidase inhibitor, but only partially attenuated by inhibiting soluble guanylyl cyclase. Inhibition of NADPH oxidase with apocynin attenuated ANG II–induced contractility (35%) similar to that of nitrite. In the presence of nitrite, no further effect of apocynin was observed, suggesting NADPH oxidase as a possible target. In preglomerular vascular smooth muscle cells and kidney cortex, nitrite reduced both basal and ANG II–induced NADPH oxidase activity. These effects of nitrite were also abolished by xanthine oxidase inhibition. Moreover, supplementation with dietary nitrate (10−2 mol/L) reduced renal NADPH oxidase activity and attenuated ANG II–mediated arteriolar contractions and hypertension (99±2–146±2 mm Hg) compared with placebo (100±3–168±3 mm Hg). In conclusion, these novel findings position NADPH oxidase in the renal microvasculature as a prime target for blood pressure–lowering effects of inorganic nitrate and nitrite.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Role of NOX2 in the regulation of afferent arteriole responsiveness

Mattias Carlström; En Yin Lai; Zufu Ma; Andreas Patzak; Russell D Brown; A. Erik G. Persson

NADPH oxidases (NOX) are the major source of reactive oxygen species (ROS) in the vasculature and contribute to the control of renal perfusion. The role of NOX2 in the regulation of blood pressure and afferent arteriole responsiveness was investigated in NOX2(-/-) and wild-type mice. Arteriole constrictions to ANG II (10(-14)-10(-6) mol/l) were weaker in NOX2(-/-) compared with wild types. N(omega)-nitro-l-arginine methyl ester (l-NAME; 10(-4) mol/l) treatment reduced basal diameters significantly more in NOX2(-/-) (-18%) than in wild types (-6%) and augmented ANG II responses. Adenosine (10(-11)-10(-4) mol/l) constricted arterioles of wild types but not of NOX2(-/-). However, simultaneous inhibition of adenosine type-2 receptors induced vasoconstriction, which was stronger in NOX2(-/-). Adenosine (10(-8) mol/l) enhanced the ANG II response in wild type, but not in NOX2(-/-). This sensitizing effect by adenosine was abolished by apocynin. Chronic ANG II pretreatment (14 days) did not change the ANG II responses in NOX2(-/-), but strengthened the response in wild types. ANG II pretreatment augmented the l-NAME response in NOX2(-/-) (-33%), but not in wild types. Simultaneous application of l-NAME and ANG II caused a stronger constriction in the NOX2(-/-) (-64%) than in wild types (-46%). Basal blood pressures were similar in both genotypes, however, chronic ANG II infusion elevated blood pressure to a greater extent in wild-type (15 +/- 1%) than in NOX2(-/-) (8 +/- 1%) mice. In conclusion, NOX2 plays an important role in the control of afferent arteriole tone and is involved in the contractile responses to ANG II and/or adenosine. NOX2 can be activated by elevated ANG II and may play an important role in ANG II-induced hypertension. NOX2-derived ROS scavenges nitric oxide, causing subsequent nitric oxide-deficiency.


Antioxidants & Redox Signaling | 2014

Cross-talk Between Nitrate-Nitrite-NO and NO Synthase Pathways in Control of Vascular NO Homeostasis

Mattias Carlström; Ming Liu; Ting Yang; Christa Zollbrecht; Liyue Huang; Maria Peleli; Sara Borniquel; Hiroaki Kishikawa; Michael Hezel; A. Erik G. Persson; Eddie Weitzberg; Jon O. Lundberg

AIMS Inorganic nitrate and nitrite from endogenous and dietary sources have emerged as alternative substrates for nitric oxide (NO) formation in addition to the classic L-arginine NO synthase (NOS)-dependent pathway. Here, we investigated a potential cross-talk between these two pathways in the regulation of vascular function. RESULTS Long-term dietary supplementation with sodium nitrate (0.1 and 1 mmol kg(-1) day(-1)) in rats caused a reversible dose-dependent reduction in phosphorylated endothelial NOS (eNOS) (Ser1177) in aorta and a concomitant increase in phosphorylation at Thr495. Moreover, eNOS-dependent vascular responses were attenuated in vessels harvested from nitrate-treated mice or when nitrite was acutely added to control vessels. The citrulline-to-arginine ratio in plasma, as a measure of eNOS activity, was reduced in nitrate-treated rodents. Telemetry measurements revealed that a low dietary nitrate dose reduced blood pressure, whereas a higher dose was associated with a paradoxical elevation. Finally, plasma cyclic guanosine monophosphate increased in mice that were treated with a low dietary nitrate dose and decreased with a higher dose. INNOVATION AND CONCLUSIONS These results demonstrate the existence of a cross-talk between the nitrate-nitrite-NO pathway and the NOS-dependent pathway in control of vascular NO homeostasis.

Collaboration


Dive into the Mattias Carlström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ting Yang

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge