Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mattias Jonsson is active.

Publication


Featured researches published by Mattias Jonsson.


arXiv: Commutative Algebra | 2004

The valuative tree

Charles Favre; Mattias Jonsson

1 Generalities.- 1.1 Setup.- 1.2 Valuations.- 1.3 Krull Valuations.- 1.4 Plane Curves.- 1.5 Examples of Valuations.- 1.5.1 The Multiplicity Valuation.- 1.5.2 Monomial Valuations.- 1.5.3 Divisorial Valuations.- 1.5.4 Quasimonomial Valuations.- 1.5.5 Curve Valuations.- 1.5.6 Exceptional Curve Valuations.- 1.5.7 Infinitely Singular Valuations.- 1.6 Valuations Versus Krull Valuations.- 1.7 Sequences of Blowups and Krull Valuations.- 2 MacLanes Method.- 2.1 Sequences of Key Polynomials.- 2.1.1 Key Polynomials.- 2.1.2 From SKPs to Valuations I.- 2.1.3 Proof of Theorem 2.8.- 2.1.4 From SKPs to Valuations II.- 2.2 Classification.- 2.3 Graded Rings and Numerical Invariants.- 2.3.1 Homogeneous Decomposition I.- 2.3.2 Homogeneous Decomposition II.- 2.3.3 Value Semigroups and Numerical Invariants.- 2.4 From Valuations to SKPs.- 2.5 A Computation.- 3 Tree Structures.- 3.1 Trees.- 3.1.1 Rooted Nonmetric Trees.- 3.1.2 Nonmetric Trees.- 3.1.3 Parameterized Trees.- 3.1.4 The Weak Topology.- 3.1.5 Metric Trees.- 3.1.6 Trees from Ultrametric Spaces.- 3.1.7 Trees from Simplicial Trees.- 3.1.8 Trees from Q-trees.- 3.2 Nonmetric Tree Structure on V.- 3.2.1 Partial Ordering.- 3.2.2 Dendrology.- 3.2.3 A Model Tree for V.- 3.3 Parameterization of V by Skewness.- 3.3.1 Skewness.- 3.3.2 Parameterization.- 3.3.3 Proofs.- 3.3.4 Tree Metrics.- 3.4 Multiplicities.- 3.5 Approximating Sequences.- 3.6 Thinness.- 3.7 Value Semigroups and Approximating Sequences.- 3.8 Balls of Curves.- 3.8.1 Valuations Through Intersections.- 3.8.2 Balls of Curves.- 3.9 The Relative Tree Structure.- 3.9.1 The Relative Valuative Tree.- 3.9.2 Relative Parameterizations.- 3.9.3 Balls of Curves.- 3.9.4 Homogeneity.- 4 Valuations Through Puiseux Series.- 4.1 Puiseux Series and Valuations.- 4.2 Tree Structure.- 4.2.1 Nonmetric Tree Structure.- 4.2.2 Puiseux Parameterization.- 4.2.3 Multiplicities.- 4.3 Galois Action.- 4.3.1 The Galois Group.- 4.3.2 Action on Vx.- 4.3.3 The Orbit Tree.- 4.4 A Tale of Two Trees.- 4.4.1 Minimal Polynomials.- 4.4.2 The Morphism.- 4.4.3 Proof.- 4.5 The Berkovich Projective Line.- 4.6 The Bruhat-Tits Metric.- 4.7 Dictionary.- 5 Topologies.- 5.1 The Weak Topology.- 5.1.1 The Equivalence.- 5.1.2 Properties.- 5.2 The Strong Topology on V.- 5.2.1 Strong Topology I.- 5.2.2 Strong Topology II.- 5.2.3 The Equivalence.- 5.2.4 Properties.- 5.3 The Strong Topology on Vqm.- 5.4 Thin Topologies.- 5.5 The Zariski Topology.- 5.5.1 Definition.- 5.5.2 Recovering V from VK.- 5.6 The Hausdorff-Zariski Topology.- 5.6.1 Definition.- 5.6.2 The N-tree Structure on VK.- 5.7 Comparison of Topologies.- 5.7.1 Topologies.- 5.7.2 Metrics.- 6 The Universal Dual Graph.- 6.1 Nonmetric Tree Structure.- 6.1.1 Compositions of Blowups.- 6.1.2 Dual Graphs.- 6.1.3 The Q-tree.- 6.1.4 Tangent Spaces.- 6.1.5 The R-tree.- 6.2 Infinitely Near Points.- 6.2.1 Definitions and Main Results.- 6.2.2 Proofs.- 6.3 Parameterization and Multiplicity.- 6.3.1 Farey Weights and Parameters.- 6.3.2 Multiplicities.- 6.4 The Isomorphism.- 6.5 Proof of the Isomorphism.- 6.5.1 Step 1: ? : ?* ? Vdiv is bijective.- 6.5.2 Step 2: A?? = A.- 6.5.3 Step 3: ? and ??1 Are Order Preserving.- 6.5.4 Step 4: ? Preserves Multiplicity.- 6.6 Applications.- 6.6.1 Curvettes.- 6.6.2 Centers of Valuations and Partitions of V.- 6.6.3 Potpourri on Divisorial Valuations.- 6.6.4 Monomialization.- 6.7 The Dual Graph of the Minimal Desingularization.- 6.7.1 The Embedding of ?C* in ?*.- 6.7.2 Construction of ?C from the Equisingularity Type of C.- 6.8 The Relative Tree Structure.- 6.8.1 The Relative Dual Graph.- 6.8.2 Weights, Parameterization and Multiplicities.- 6.8.3 The Isomorphism.- 6.8.4 The Contraction Map at a Free Point.- 7 Tree Measures.- 7.1 Outline.- 7.1.1 The Unbranched Case.- 7.1.2 The General Case.- 7.1.3 Organization.- 7.2 More on the Weak Topology.- 7.2.1 Definition.- 7.2.2 Basic properties.- 7.2.3 Subtrees.- 7.2.4 Connectedness.- 7.2.5 Compactness.- 7.3 Borel Measures.- 7.3.1 Basic Properties.- 7.3.2 Radon Measures.- 7.3.3 Spaces of Measures.- 7.3.4 The Support of a Measure.- 7.3.5 A Generating Algebra.- 7.3.6 Every Complex Borel Measure is Radon.- 7.4 Functions of Bounded Variation.- 7.4.1 Definitions.- 7.4.2 Decomposition.- 7.4.3 Limits and Continuity.- 7.4.4 The Space N.- 7.4.5 Finite Trees.- 7.4.6 Proofs.- 7.5 Representation Theorem I.- 7.5.1 First Step.- 7.5.2 Second Step: from Functions to Measures.- 7.5.3 Total Variation.- 7.6 Complex Tree Potentials.- 7.6.1 Definition.- 7.6.2 Directional Derivatives.- 7.7 Representation Theorem II.- 7.8 Atomic Measures.- 7.9 Positive Tree Potentials.- 7.9.1 Definition.- 7.9.2 Jordan Decompositions.- 7.10 Weak Topologies and Compactness.- 7.11 Restrictions to Subtrees.- 7.12 Inner Products.- 7.12.1 Hausdorff Measure.- 7.12.2 The Positive Case.- 7.12.3 Properties.- 7.12.4 The Complex Case.- 7.12.5 Topologies and Completeness.- 8 Applications of the Tree Analysis.- 8.1 Zariskis Theory of Complete Ideals.- 8.1.1 Basic Properties.- 8.1.2 Normalized Blowup.- 8.1.3 Integral Closures.- 8.1.4 Multiplicities.- 8.2 The Voute etoilee.- 8.2.1 Definition.- 8.2.2 Cohomology.- 8.2.3 Intersection Product.- 8.2.4 Associated Complex Tree Potentials.- 8.2.5 Isometric Embedding.- 8.2.6 Cohomology Groups.- A Infinitely Singular Valuations.- A.1 Characterizations.- A.2 Constructions.- B The Tangent Space at a Divisorial Valuation.- C Classification.- D Combinatorics of Plane Curve Singularities.- D.1 Zariskis Terminology for Plane Curve Singularities.- D.2 The Eggers Tree.- E.1 Completeness.- E.2 The Residue Field.- References.


Journal of the American Mathematical Society | 2005

Valuations and multiplier ideals

Charles Favre; Mattias Jonsson

This article is the third of a series of work on a new approach to the study of singularities of various objects in a local, two-dimensional setting. Our focus in the present paper is on multiplier ideals and singularity exponents. In the discussion below, we fix an equicharacteristic zero, two-dimensional regular local ring (R, m) with algebraically closed residue field. An important example is the ring R = (Do o? holomorphic germs at the origin in C2. In [FJ1], we introduced the space V consisting of all R+U{+00}-valued valuations on R centered at m, and normalized by ^(m) = 1. This space is naturally a tree: it is a union of (uncountably many) real segments patched together in such a way that V remains homotopic to a point. It is also an R-tree in the classical sense for a natural metric. We hence call V the valuative tree. It encodes in a natural way all possible blowups of R centered at m and therefore gives a way of measuring quite precisely singularities of different kinds of objects. The points in V that are not ends form the subtree Vqm of quasimonomial valuations. These valuations, which can alternatively be characterized as Abhyankar valuations of rank 1 or as


Journal of Algebraic Geometry | 2009

Differentiability of volumes of divisors and a problem of Teissier

Sébastien Boucksom; Charles Favre; Mattias Jonsson

We give an algebraic construction of the positive intersection products of pseudo-effective classes and use them to prove that the volume function on the Neron-Severi space of a projective variety ...


Inventiones Mathematicae | 2005

Valuative analysis of planar plurisubharmonic functions

Charles Favre; Mattias Jonsson

We show that valuations on the ring R of holomorphic germs in dimension 2 may be naturally evaluated on plurisubharmonic functions, giving rise to generalized Lelong numbers in the sense of Demailly. Any plurisubharmonic function thus defines a real-valued function on the set


Finance and Stochastics | 2005

Optimal investment with derivative securities

Aytaç İlhan; Mattias Jonsson; Ronnie Sircar

\mathcal{V}


Lecture Notes in Mathematics | 2015

Dynamics on Berkovich Spaces in Low Dimensions

Mattias Jonsson

of valuations on R and – by way of a natural Laplace operator defined in terms of the tree structure on


Duke Mathematical Journal | 2008

Degree growth of meromorphic surface maps

Sébastien Boucksom; Charles Favre; Mattias Jonsson

\mathcal{V}


Archive | 2002

Optimal investment problems and volatility homogenization approximations

Mattias Jonsson; Ronnie Sircar

– a positive measure on


Inventiones Mathematicae | 2002

Stable manifolds of holomorphic diffeomorphisms

Mattias Jonsson; Dror Varolin

\mathcal{V}


Arkiv för Matematik | 2000

Ergodic properties of fibered rational maps

Mattias Jonsson

. This measure contains a great deal of information on the singularity at the origin. Under mild regularity assumptions, it yields an exact formula for the mixed Monge-Ampère mass of two plurisubharmonic functions. As a consequence, any generalized Lelong number can be interpreted as an average of valuations. Using our machinery we also show that the singularity of any positive closed (1,1) current T can be attenuated in the following sense: there exists a finite composition of blowups such that the pull-back of T decomposes into two parts, the first associated to a divisor with normal crossing support, the second having small Lelong numbers.

Collaboration


Dive into the Mattias Jonsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Wulcan

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jussi Keppo

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge