Mattis B. Wigestrand
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mattis B. Wigestrand.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Yann S. Mineur; Adetokunbo Obayemi; Mattis B. Wigestrand; Gianna M. Fote; Cali A. Calarco; Alice M. Li; Marina R. Picciotto
Symptoms of depression can be induced in humans through blockade of acetylcholinesterase (AChE) whereas antidepressant-like effects can be produced in animal models and some clinical trials by limiting activity of acetylcholine (ACh) receptors. Thus, ACh signaling could contribute to the etiology of mood regulation. To test this hypothesis, we administered the AChE inhibitor physostigmine to mice and demonstrated an increase in anxiety- and depression-like behaviors that was reversed by administration of nicotinic or muscarinic antagonists. The behavioral effects of physostigmine were also reversed by administration of the selective serotonin reuptake inhibitor fluoxetine. Administration of fluoxetine also increased AChE activity throughout the brain, with the greatest change in the hippocampus. To determine whether cholinergic signaling in the hippocampus could contribute to the systemic effects of cholinergic drugs, we infused physostigmine or virally delivered shRNAs targeting AChE into the hippocampus. Both pharmacological and molecular genetic decreases in hippocampal AChE activity increased anxiety- and depression-like behaviors and decreased resilience to repeated stress in a social defeat paradigm. The behavioral changes due to shRNA-mediated knockdown of AChE were rescued by coinfusion of an shRNA-resistant AChE transgene into the hippocampus and reversed by systemic administration of fluoxetine. These data demonstrate that ACh signaling in the hippocampus promotes behaviors related to anxiety and depression. The sensitivity of these effects to fluoxetine suggests that shRNA-mediated knockdown of hippocampal AChE represents a model for anxiety- and depression-like phenotypes. Furthermore, abnormalities in the cholinergic system may be critical for the etiology of mood disorders and could represent an endophenotype of depression.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Robert M. Sears; Ann E. Fink; Mattis B. Wigestrand; Claudia R. Farb; Luis de Lecea; Joseph E. LeDoux
Significance The hypothalamic orexin (hypocretin) system controls survival-related processes such as food intake, arousal, and stress. Here we show that orexins also play an important role in learning about stimuli that predict harm. We demonstrate that blocking orexin activity in the noradrenergic locus coeruelus (LC) reduces, whereas increasing its activity enhances, threat learning in a Pavlovian auditory threat conditioning paradigm. Moreover, we demonstrate a direct functional connection between orexin enhancement of LC activity and amygdala-dependent memory processes. Strong, aversive memories can lead to fear and anxiety disorders that have a negative impact on individuals and their quality of life. The orexin system may represent a unique treatment target for these disorders. Survival in a dangerous environment requires learning about stimuli that predict harm. Although recent work has focused on the amygdala as the locus of aversive memory formation, the hypothalamus has long been implicated in emotional regulation, and the hypothalamic neuropeptide orexin (hypocretin) is involved in anxiety states and arousal. Nevertheless, little is known about the role of orexin in aversive memory formation. Using a combination of behavioral pharmacology, slice physiology, and optogenetic techniques, we show that orexin acts upstream of the amygdala via the noradrenergic locus coeruleus to enable threat (fear) learning, specifically during the aversive event. Our results are consistent with clinical studies linking orexin levels to aversive learning and anxiety in humans and dysregulation of the orexin system may contribute to the etiology of fear and anxiety disorders.
Neurotoxicology | 2013
Mattis B. Wigestrand; Mia Stenberg; Sven Ivar Walaas; Frode Fonnum; Patrik L. Andersson
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are neurotoxic compounds with known effects at the dopaminergic system in the brain. In a previous study we demonstrated that NDL-PCBs inhibit uptake of dopamine into rat brain synaptosomes, an effect most likely mediated by inhibition of the dopamine transporter (DAT). Here, using the cocaine analogue [(3)H]WIN-35,428 binding assay and synaptosomes, we directly investigate whether NDL-PCBs act via DAT and explore the structure-activity relationship of this effect. In total, thirty PCBs were investigated, including a previously selected training set of twenty PCBs covering the structural variation within tri- to hepta-chlorinated NDL-PCBs, and an additional set of ten NDL-PCB congeners selected to validate the structure-activity pattern of neurotoxic PCBs. Since previous work has demonstrated that NDL-PCBs can also inhibit the vesicular monoamine transporter 2 (VMAT2), we additionally examined whether some PCB congeners favour an effect on VMAT2 and others on DAT. Our results show that NDL-PCBs are potent inhibitors of [(3)H]WIN-35,428 binding to DAT. In fact, we identify a PCB congener (PCB 110) with similar potency for [(3)H]WIN-35,428 binding inhibition as cocaine. All active congeners were ortho-chlorinated PCBs, and in particular, tetra- and penta-chlorinated with 2-3 chlorine atoms in the ortho position were potent inhibitors of [(3)H]WIN-35,428 binding. Notably, the most active PCBs are highly prevalent in commercial mixtures of PCBs (Aroclor 1242, 1254 and 1260), which indicates that DAT inhibition could be one of the factors contributing to behavioural effects after Aroclor exposure. Derived data correlated well with the recently derived neurotoxic equivalency factors (NEQs), indicating the generality and applicability of the NEQ scheme in risk assessments of PCBs.
Neuropsychopharmacology | 2015
Yann S. Mineur; Emily B. Einstein; Matthew P. Bentham; Mattis B. Wigestrand; Sam Blakeman; Sylvia A Newbold; Marina R. Picciotto
Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders.
Neurotoxicology | 2013
H.F. Berntsen; Mattis B. Wigestrand; Inger Lise Bogen; Frode Fonnum; Sven Ivar Walaas; A. Moldes-Anaya
The fungal neurotoxin penitrem A has previously been found to cause neurological disorders in animals and humans after ingestion of contaminated food and/or feed. It penetrates the blood-brain-barrier and causes cerebellar pathology in rats, including mild effects on granule neurons. The aim of the current study was to investigate the potential toxicity of penitrem A in rat cerebellar granule neurons in vitro, and to examine the involvement of the GABAA, AMPA and NMDA receptors, intracellular signalling pathways as well as the role of oxidative stress in penitrem A-induced neuronal death. Cerebellar granule cells were exposed to penitrem A, alone or together with different pharmacological agents, before cell survival was assessed with the MTT assay or formation of reactive oxygen species (ROS) was investigated with the DCF assay. Penitrem A caused a time- and concentration-dependent reduction in cell survival, as well as a concentration-dependent increase in ROS production. Co-incubation with diazepam, GABA, BAPTA-AM, vitamin E, SP600125 and cyclosporine A significantly reduced cell death. Our results show that penitrem A is toxic to cerebellar granule neurons in vitro. Further, ROS production and the GABAA receptor are likely to be involved in the induction of neuronal death following penitrem A exposure. A disruption of calcium homeostasis and activation of the JNK pathway may also play a role in penitrem A neurotoxicity.
Neurochemistry International | 2011
Angel Moldes-Anaya; Frode Fonnum; Gunnar Sundstøl Eriksen; Thomas Rundberget; S. Ivar Walaas; Mattis B. Wigestrand
The effects of the fungal neurotoxin penitrem A on the GABAergic and glutamatergic systems in rat brain were evaluated. Penitrem A inhibited binding of the GABA(A)-receptor ligand [³H]TBOB to rat forebrain and cerebellar membrane preparations with IC₅₀ (half maximal inhibitory concentration) values of 11 and 9 μM, respectively. Furthermore, penitrem A caused a concentration-dependent increase of [³H]flunitrazepam and [³H]muscimol binding in rat forebrain, but not in cerebellar preparations. The stimulation of [³H]flunitrazepam binding by penitrem A was abolished by the addition of GABA. In cerebellar preparations, a different pharmacological profile was found, with penitrem A allosterically inhibiting [³H]TBOB binding by interacting with a bicuculline-sensitive site. Moreover, penitrem A inhibited the high affinity uptake of GABA and glutamate into cerebellar synaptosomes with IC₅₀ values of 20 and 47 μM, respectively. The toxin showed no effect on NMDA or AMPA glutamate receptor binding. In conclusion, our results suggest that penitrem A exerts region-specific effects in the brain, leading to positive modulation of GABA(A)-receptor function in forebrain. Conversely, penitrem A may act as a bicuculline-like convulsant in cerebellum.
Journal of Neurochemistry | 2011
Mattis B. Wigestrand; Yann S. Mineur; Christopher J. Heath; Frode Fonnum; Marina R. Picciotto; Sven Ivar Walaas
J. Neurochem. (2011) 119, 240–250.
Learning & Memory | 2017
Mattis B. Wigestrand; Hillary C. Schiff; Marianne Fyhn; Joseph E. LeDoux; Robert M. Sears
Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used muscimol infusions in rats to show that discriminatory threat learning requires Au1 activity specifically during memory acquisition and retrieval, but not during consolidation. Memory specificity was similarly disrupted by infusion of PKMζ inhibitor peptide (ZIP) during memory storage. Our findings show that Au1 is required at critical memory phases and suggest that Au1 plasticity enables stimulus discrimination.
Neurochemistry International | 2012
Mattis B. Wigestrand; Frode Fonnum; S. Ivar Walaas
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Elise Holter Thompson; Kristian Kinden Lensjø; Mattis B. Wigestrand; Anders Malthe-Sørenssen; Torkel Hafting; Marianne Fyhn
Significance Perineuronal nets (PNNs), a type of extracellular matrix only found in the central nervous system, wraps tightly around the cell soma and proximal dendrites of a subset of neurons. The PNNs are long-lasting structures that restrict plasticity, making them eligible candidates for memory processing. This work demonstrates that PNNs in the lateral secondary visual cortex (V2L) are essential for the recall of a remote visual fear memory. The results suggest a role of extracellular molecules in storage and retrieval of memories. Throughout life animals learn to recognize cues that signal danger and instantaneously initiate an adequate threat response. Memories of such associations may last a lifetime and far outlast the intracellular molecules currently found to be important for memory processing. The memory engram may be supported by other more stable molecular components, such as the extracellular matrix structure of perineuronal nets (PNNs). Here, we show that recall of remote, but not recent, visual fear memories in rats depend on intact PNNs in the secondary visual cortex (V2L). Supporting our behavioral findings, increased synchronized theta oscillations between V2L and basolateral amygdala, a physiological correlate of successful recall, was absent in rats with degraded PNNs in V2L. Together, our findings suggest a role for PNNs in remote memory processing by stabilizing the neural network of the engram.