Maude E. Phipps
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maude E. Phipps.
Science | 2009
Mahmood Ameen Abdulla; Ikhlak Ahmed; Anunchai Assawamakin; Jong Bhak; Samir K. Brahmachari; Gayvelline C. Calacal; Amit Chaurasia; Chien-Hsiun Chen; Jieming Chen; Yuan-Tsong Chen; Jiayou Chu; Eva Maria Cutiongco-de la Paz; Maria Corazon A. De Ungria; Frederick C. Delfin; Juli Edo; Suthat Fuchareon; Ho Ghang; Takashi Gojobori; Junsong Han; Sheng Feng Ho; Boon Peng Hoh; Wei Huang; Hidetoshi Inoko; Pankaj Jha; Timothy A. Jinam; Li Jin; Jongsun Jung; Daoroong Kangwanpong; Jatupol Kampuansai; Giulia C. Kennedy
Patterns of Early Migration In order to gain insight into various migrations that must have happened during movement of early humans into Asia and the subsequent populating of the largest continent on Earth, the HUGO Pan-Asian SNP Consortium (p. 1541) analyzed genetic variation in almost 2000 individuals representing 73 Asian and two non-Asian populations. The results suggest that there may have been a single major migration of people into Asia and a subsequent south-to-north migration across the continent. While most populations from the same linguistic group tend to cluster together in terms of relatedness, several do not, clustering instead with their geographic neighbors, suggesting either substantial recent mixing among the populations or language replacement. Furthermore, data from indigenous Taiwanese populations appear to be inconsistent with the idea of a Taiwan homeland for Austronesian populations. Genetic analyses of Asian peoples suggest that the continent was populated through a single migration event. Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations.
Nature | 2016
Anna-Sapfo Malaspinas; Michael C. Westaway; Craig Muller; Vitor C. Sousa; Oscar Lao; Isabel Alves; Anders Bergström; Georgios Athanasiadis; Jade Y. Cheng; Jacob E. Crawford; Tim Hermanus Heupink; Enrico Macholdt; Stephan Peischl; Simon Rasmussen; Stephan Schiffels; Sankar Subramanian; Joanne L. Wright; Anders Albrechtsen; Chiara Barbieri; Isabelle Dupanloup; Anders Eriksson; Ashot Margaryan; Ida Moltke; Irina Pugach; Thorfinn Sand Korneliussen; Ivan P. Levkivskyi; J. Víctor Moreno-Mayar; Shengyu Ni; Fernando Racimo; Martin Sikora
The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama–Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25–40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10–32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama–Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51–72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.
Trends in Molecular Medicine | 2010
Mun-Kit Choy; Maude E. Phipps
The human major histocompatibility complex class I chain-related gene A (MICA) is one of the genes in the HLA class I region of chromosome 6. Unlike HLA classical class I gene products, MICA does not present any antigen but acts as a ligand for several immune cells including natural killer (NK) cells bearing NKG2D receptors. MICA is the member of the non-classical class I family that displays the greatest degree of polymorphism. MICA alleles can be divided into two large groups with the polymorphisms found in alpha3 domains. This division could be explained by a possible polyphyletic origin that is in line with recent findings from evolutionary, population and functional studies of this gene. MICA polymorphisms are associated with a number of diseases related to NK activity, such as viral infection, cancer and allograft rejection or graft-versus-host disease (GVHD). The mechanisms underlying these associations include NK cell-mediated cytotoxicity and MICA shedding to produce immunosuppressive soluble MICA particles. The MICA-induced humoral response has attracted interest recently because of its possible role in graft rejection in solid organ transplantation. Here, we discuss the genetics and biology of the MICA gene and its products, and their importance in disease.
Immunology Letters | 1999
Siew-Nee Yap; Maude E. Phipps; M. Manivasagar; John Bosco
The neutrophil antigen (NA)1 and 2 is coded by two recognized allelic forms of Fc gamma receptor IIIB (FcgammaRIIIB). FcgammaRIIIb is a low affinity receptor and preferentially removes immune complexes from the circulation. Systemic lupus erythematosus (SLE) is an autoimmune and polygenic disorder characterized by accumulation of autoimmune complexes. The majority of SLE patients in our medical center are of Chinese ethnicity, followed by Malay and Indian. Recently, studies have focussed on the Fc receptors in different ethnic groups and their relation to SLE. We chose to study the gene distribution of this receptor in the Chinese and Malays population in Malaysia. We designed a polymerase chain reaction allele specific primers (PCR-ASP) method to distinguish the two allelic forms. Genomic DNA was isolated from the peripheral blood of 183 Chinese and 55 Malays SLE patients as well as 100 Chinese and 50 Malays healthy controls. Genotyping of Chinese SLE patients revealed that the gene frequencies for FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 were 0.648 and 0.347, while in the ethnically matched healthy controls they were 0.68 and 0.32, respectively. One out of the 183 Chinese SLE patients was identified as a NA-null due to the absence of PCR product for both alleles. The FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 allele frequencies for both the Malays SLE and healthy controls were 0.62 and 0.38.
Genes and Immunity | 2009
F.P. Valente; C.R.T. Tan; Suzanna Temple; Maude E. Phipps; C. Witt; Gurvinder Kaur; Ivo Gut; S. Mcginn; Richard Allcock; Constance S N Chew; Patricia Price
The region spanning the tumour necrosis factor (TNF) cluster in the human major histocompatibility complex is implicated in susceptibility to immunopathological disease, but ethnic differences and linkage disequilibrium have hampered identification of critical polymorphisms. Here, we investigate Europeans, Asians (Bidayuh, Chinese, Indian, Jehai, Malay, Temuan) and Australian Aborigines to provide a framework for disease-association studies. DNA from 999 unrelated healthy donors was genotyped at 38 loci, primarily in coding and promoter regions over a 60-kb region spanning seven genes near TNF. The PHASE algorithm was used to statistically infer TNF block haplotypes and estimate their frequencies in each population. The TNF block is carried as 31 haplotypes in all populations combined, with <19 in any single population. Only six haplotypes have a unique tag single nucleotide polymorphism (SNP) valid for all populations, but seven haplotypes could be tagged with individual SNPs in selected populations. Four to eight TNF block haplotypes exist across all ethnicities, and hence must pre-date the divergence of these populations from a common ancestor >160 000 years ago. Some haplotypes are unique to isolated populations, but they do not contain unique SNP. Hence, they reflect restricted migration and/or extinction of some families rather than de novo mutation.
Genome Biology and Evolution | 2015
Farhang Aghakhanian; Yushima Yunus; Rakesh Naidu; Timothy A. Jinam; Andrea Manica; Boon Peng Hoh; Maude E. Phipps
Indigenous populations of Malaysia known as Orang Asli (OA) show huge morphological, anthropological, and linguistic diversity. However, the genetic history of these populations remained obscure. We performed a high-density array genotyping using over 2 million single nucleotide polymorphisms in three major groups of Negrito, Senoi, and Proto-Malay. Structural analyses indicated that although all OA groups are genetically closest to East Asian (EA) populations, they are substantially distinct. We identified a genetic affinity between Andamanese and Malaysian Negritos which may suggest an ancient link between these two groups. We also showed that Senoi and Proto-Malay may be admixtures between Negrito and EA populations. Formal admixture tests provided evidence of gene flow between Austro-Asiatic-speaking OAs and populations from Southeast Asia (SEA) and South China which suggest a widespread presence of these people in SEA before Austronesian expansion. Elevated linkage disequilibrium (LD) and enriched homozygosity found in OAs reflect isolation and bottlenecks experienced. Estimates based on Ne and LD indicated that these populations diverged from East Asians during the late Pleistocene (14.5 to 8 KYA). The continuum in divergence time from Negritos to Senoi and Proto-Malay in combination with ancestral markers provides evidences of multiple waves of migration into SEA starting with the first Out-of-Africa dispersals followed by Early Train and subsequent Austronesian expansions.
Tissue Antigens | 2009
F.P. Valente; C.R.T. Tan; Maude E. Phipps; C. Witt; Gurvinder Kaur; Ivo Gut; Richard Allcock; Patricia Price
Associations between major histocompatibility complex (MHC) ancestral haplotypes (AHs) and immunopathological diseases are traditionally ascribed to human leukocyte antigen (HLA) class I or class II alleles. However, polymorphisms in TNF and nearby genes in the central MHC can influence risk. We have defined TNF block haplotypes in Asian, European and Australian Aboriginal donors and shown conservation of TNF block haplotypes in geographically distinct populations, consistent with a common evolutionary origin. Here we show that most TNF block haplotypes do not align with a single MHC AH and associations often vary with ethnicity. This suggests more recent recombination events between the TNF block and the HLA alleles.
Tissue Antigens | 2011
Constance S N Chew; Catherine L. Cherry; Darma Imran; Evy Yunihastuti; Adeeba Kamarulzaman; S Varna; Rusli Ismail; Maude E. Phipps; Zayd K.A. Aghafar; Ivo Gut; Patricia Price
In human immunodeficiency virus (HIV) patients, neuropathy is a common adverse side effect to some antiretroviral treatments, particularly stavudine. As stavudine is cheap, it is widely used in Asia and Africa. We showed that increasing age and height moderately predict the development of neuropathy. This was improved by the inclusion of tumour necrosis factor (TNF)-1031 (rs1799964). To investigate this association, Malay (n = 64), Chinese (n = 74) and Caucasian patients (n = 37) exposed to stavudine were screened for neuropathy. DNA samples were genotyped for polymorphisms in the central major histocompatibility complex (MHC) near TNF, and haplotypes were derived. The haplotype group FVa6,7,8 (incorporating TNF-1031) was found to be associated with neuropathy in Chinese patients in bivariate analyses (P = 0.03), and in Malays and Chinese in a multivariate analysis correcting for age and height (P = 0.02, P = 0.03, respectively). This trend was also confirmed in Caucasians.
Human Biology | 2013
Timothy A. Jinam; Maude E. Phipps; Naruya Saitou
Abstract Southeast Asia houses various culturally and linguistically diverse ethnic groups. In Malaysia, where the Malay, Chinese, and Indian ethnic groups form the majority, there exist minority groups such as the “negritos” who are believed to be descendants of the earliest settlers of Southeast Asia. Here we report patterns of genetic substructure and admixture in two Malaysian negrito populations (Jehai and Kensiu), using ∼50,000 genome-wide single-nucleotide polymorphism (SNP) data. We found traces of recent admixture in both the negrito populations, particularly in the Jehai, with the Malay through principal component analysis and STRUCTURE analysis software, which suggested that the admixture was as recent as one generation ago. We also identified significantly differentiated nonsynonymous SNPs and haplotype blocks related to intracellular transport, metabolic processes, and detection of stimulus. These results highlight the different levels of admixture experienced by the two Malaysian negritos. Delineating admixture and differentiated genomic regions should be of importance in designing and interpretation of molecular anthropology and disease association studies.
Tissue Antigens | 2010
Timothy A. Jinam; Naruya Saitou; Juli Edo; A. A. Mahmood; Maude E. Phipps
This is the first report of high-resolution human leukocyte antigen (HLA) typing in four indigenous groups in Malaysia. A total of 99 normal, healthy participants representing the Negrito (Jehai and Kensiu), Proto-Malay (Temuan) and a native group of Borneo (Bidayuh) were typed for HLA-A, -B, -DRB1 and -DQB1 genes using sequence-based typing. Eleven HLA-A, 26 HLA-B, 16 HLA-DRB1 and 14 HLA-DQB1 alleles were detected, including a new allele, HLA-B*3589 in the Jehai. Highly frequent alleles were A*2407, B*1513, B*1801, DRB1*0901, DRB1*1202, DRB1*1502, DQB1*0303 and DQB1*0502. Principal component analysis based on high-resolution HLA-A, -B and -DRB1 allele frequencies showed close affinities among all four groups, including the Negritos, with other Southeast Asian populations. These results showed the scope of HLA diversity in these indigenous minority groups and may prove beneficial for future disease association, anthropological and forensic studies.