Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maulik Shukla is active.

Publication


Featured researches published by Maulik Shukla.


Nucleic Acids Research | 2014

The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)

Ross Overbeek; Robert Olson; Gordon D. Pusch; Gary J. Olsen; James J. Davis; Terry Disz; Robert Edwards; Svetlana Gerdes; Bruce Parrello; Maulik Shukla; Veronika Vonstein; Alice R. Wattam; Fangfang Xia; Rick Stevens

In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources.


Nucleic Acids Research | 2014

PATRIC, the bacterial bioinformatics database and analysis resource

Alice R. Wattam; David Abraham; Oral Dalay; Terry Disz; Timothy Driscoll; Joseph L. Gabbard; Joseph J. Gillespie; Roger Gough; Deborah Hix; Ronald W. Kenyon; Dustin Machi; Chunhong Mao; Eric K. Nordberg; Robert Olson; Ross Overbeek; Gordon D. Pusch; Maulik Shukla; Julie Schulman; Rick Stevens; Daniel E. Sullivan; Veronika Vonstein; Andrew S. Warren; Rebecca Will; Meredith J. C. Wilson; Hyun Seung Yoo; Chengdong Zhang; Yan Zhang; Bruno W. S. Sobral

The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein–protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue.


Scientific Reports | 2015

RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

Thomas Brettin; James J. Davis; Terry Disz; Robert Edwards; Svetlana Gerdes; Gary J. Olsen; Robert Olson; Ross Overbeek; Bruce Parrello; Gordon D. Pusch; Maulik Shukla; James Thomason; Rick Stevens; Veronika Vonstein; Alice R. Wattam; Fangfang Xia

The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.


Infection and Immunity | 2011

PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species

Joseph J. Gillespie; Alice R. Wattam; Stephen A. Cammer; Joseph L. Gabbard; Maulik Shukla; Oral Dalay; Timothy Driscoll; Deborah Hix; Shrinivasrao P. Mane; Chunhong Mao; Eric K. Nordberg; Mark Scott; Julie Schulman; Eric E. Snyder; Daniel E. Sullivan; Chunxia Wang; Andrew S. Warren; Kelly P. Williams; Tian Xue; Hyun Seung Yoo; Chengdong Zhang; Yan Zhang; Rebecca Will; Ronald W. Kenyon; Bruno W. S. Sobral

ABSTRACT Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRICs outreach activities, collaborative endeavors, and future research directions is provided.


PLOS ONE | 2008

Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life

Joseph J. Gillespie; Kelly P. Williams; Maulik Shukla; Eric E. Snyder; Eric K. Nordberg; Shane M. Ceraul; Chitti Dharmanolla; Daphne Rainey; Jeetendra Soneja; Joshua M. Shallom; Nataraj Dongre Vishnubhat; Rebecca Wattam; Anjan Purkayastha; Michael J. Czar; Oswald Crasta; João C. Setubal; Abdu F. Azad; Bruno W. S. Sobral

Background Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). Methodology/Principal Findings We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. Conclusion/Significance Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.


Nucleic Acids Research | 2017

Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center

Alice R. Wattam; James J. Davis; Rida Assaf; Sébastien Boisvert; Thomas Brettin; Christopher Bun; Neal Conrad; Emily M. Dietrich; Terry Disz; Joseph L. Gabbard; Svetlana Gerdes; Christopher S. Henry; Ronald Kenyon; Dustin Machi; Chunhong Mao; Eric K. Nordberg; Gary J. Olsen; Daniel Murphy-Olson; Robert Olson; Ross Overbeek; Bruce Parrello; Gordon D. Pusch; Maulik Shukla; Veronika Vonstein; Andrew S. Warren; Fangfang Xia; Hyun Seung Yoo; Rick Stevens

The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by ‘virtual integration’ to any of PATRICs public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.


Journal of Bacteriology | 2012

A Rickettsia Genome Overrun by Mobile Genetic Elements Provides Insight into the Acquisition of Genes Characteristic of an Obligate Intracellular Lifestyle

Joseph J. Gillespie; Vinita Joardar; Kelly P. Williams; Timothy Driscoll; Jessica B. Hostetler; Eric K. Nordberg; Maulik Shukla; Brian Walenz; Catherine A. Hill; Vishvanath Nene; Abdu F. Azad; Bruno W. S. Sobral; Elisabet Caler

We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ~35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity.


Scientific Reports | 2016

Antimicrobial Resistance Prediction in PATRIC and RAST

James J. Davis; Sébastien Boisvert; Thomas Brettin; Ronald W. Kenyon; Chunhong Mao; Robert J. Olson; Ross Overbeek; John Santerre; Maulik Shukla; Alice R. Wattam; Rebecca Will; Fangfang Xia; Rick Stevens

The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. This set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.


Chemistry & Biodiversity | 2010

Data Integration for Dynamic and Sustainable Systems Biology Resources: Challenges and Lessons Learned

Daniel E. Sullivan; Joseph L. Gabbard; Maulik Shukla; Bruno W. S. Sobral

Systems‐biology and infectious‐disease (host–pathogen–environment) research and development is becoming increasingly dependent on integrating data from diverse and dynamic sources. Maintaining integrated resources over long periods of time presents distinct challenges. This review describes experiences and lessons learned from integrating data in two five‐year projects focused on pathosystems biology: the Pathosystems Resource Integration Center (PATRIC, http://patric.vbi.vt.edu/), with a goal of developing bioinformatics resources for the research and countermeasures‐development communities based on genomics data, and the Resource Center for Biodefense Proteomics Research (RCBPR, http://www.proteomicsresource.org/), with a goal of developing resources based on the experiment data such as microarray and proteomics data from diverse sources and technologies. Some challenges include integrating genomic sequence and experiment data, data synchronization, data quality control, and usability engineering. We present examples of a variety of data‐integration problems drawn from our experiences with PATRIC and RBPRC, as well as open research questions related to long‐term sustainability, and describe the next steps to meeting these challenges. Novel contributions of this work include 1) an approach for addressing discrepancies between experiment results and interpreted results, and 2) expanding the range of data‐integration techniques to include usability engineering at the presentation level.


Mbio | 2012

Comparative Genomics of Early-Diverging Brucella Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway

Alice R. Wattam; Thomas J. Inzana; Kelly P. Williams; Shrinivasrao P. Mane; Maulik Shukla; Nalvo F. Almeida; Allan W. Dickerman; Steven W Mason; Ignacio Moriyón; David O’Callaghan; Adrian M. Whatmore; Bruno W. S. Sobral; Rebekah V. Tiller; Alex R. Hoffmaster; Michael Frace; Cristina De Castro; Antonio Molinaro; Stephen M. Boyle; Barun K. De; João C. Setubal

ABSTRACT Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1T and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1T and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1T maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. IMPORTANCE This report examines differences between genomes from four new Brucella strains and those from the classic Brucella spp. Our results show that the four new strains are outliers with respect to the previously known Brucella strains and yet are part of the genus, forming two new clades. The analysis revealed important information about the evolution and survival mechanisms of Brucella species, helping reshape our knowledge of this important zoonotic pathogen. One discovery of special importance is that one of the strains, BO2, produces an O-antigen distinct from any that has been seen in any other Brucella isolates to date. This report examines differences between genomes from four new Brucella strains and those from the classic Brucella spp. Our results show that the four new strains are outliers with respect to the previously known Brucella strains and yet are part of the genus, forming two new clades. The analysis revealed important information about the evolution and survival mechanisms of Brucella species, helping reshape our knowledge of this important zoonotic pathogen. One discovery of special importance is that one of the strains, BO2, produces an O-antigen distinct from any that has been seen in any other Brucella isolates to date.

Collaboration


Dive into the Maulik Shukla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno W. S. Sobral

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Chunhong Mao

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rick Stevens

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon D. Pusch

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross Overbeek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Veronika Vonstein

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge