Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauno Vihinen is active.

Publication


Featured researches published by Mauno Vihinen.


Nature Medicine | 2009

Copy Number Analysis Indicates Monoclonal Origin of Lethal Metastatic Prostate Cancer

Wennuan Liu; Sari Laitinen; Sofia Khan; Mauno Vihinen; Jeanne Kowalski; Guoqiang Yu; Li Chen; Charles M. Ewing; Mario A. Eisenberger; Michael A. Carducci; William G. Nelson; Srinivasan Yegnasubramanian; Jun Luo; Yue Wang; Jianfeng Xu; William B. Isaacs; Tapio Visakorpi; G. Steven Bova

Many studies have shown that primary prostate cancers are multifocal and are composed of multiple genetically distinct cancer cell clones. Whether or not multiclonal primary prostate cancers typically give rise to multiclonal or monoclonal prostate cancer metastases is largely unknown, although studies at single chromosomal loci are consistent with the latter case. Here we show through a high-resolution genome-wide single nucleotide polymorphism and copy number survey that most, if not all, metastatic prostate cancers have monoclonal origins and maintain a unique signature copy number pattern of the parent cancer cell while also accumulating a variable number of separate subclonally sustained changes. We find no relationship between anatomic site of metastasis and genomic copy number change pattern. Taken together with past animal and cytogenetic studies of metastasis and recent single-locus genetic data in prostate and other metastatic cancers, these data indicate that despite common genomic heterogeneity in primary cancers, most metastatic cancers arise from a single precursor cancer cell. This study establishes that genomic archeology of multiple anatomically separate metastatic cancers in individuals can be used to define the salient genomic features of a parent cancer clone of proven lethal metastatic phenotype.


Critical Reviews in Biochemistry and Molecular Biology | 1989

MICROBIAL AMYLOLYTIC ENZYMES

Mauno Vihinen; Pekka Mäntsälä

Starch-degrading, amylolytic enzymes are widely distributed among microbes. Several activities are required to hydrolyze starch to its glucose units. These enzymes include alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulan-degrading enzymes, exoacting enzymes yielding alpha-type endproducts, and cyclodextrin glycosyltransferase. Properties of these enzymes vary and are somewhat linked to the environmental circumstances of the producing organisms. Features of the enzymes, their action patterns, physicochemical properties, occurrence, genetics, and results obtained from cloning of the genes are described. Among all the amylolytic enzymes, the genetics of alpha-amylase in Bacillus subtilis are best known. Alpha-Amylase production in B. subtilis is regulated by several genetic elements, many of which have synergistic effects. Genes encoding enzymes from all the amylolytic enzyme groups dealt with here have been cloned, and the sequences have been found to contain some highly conserved regions thought to be essential for their action and/or structure. Glucoamylase appears usually in several forms, which seem to be the results of a variety of mechanisms, including heterogeneous glycosylation, limited proteolysis, multiple modes of mRNA splicing, and the presence of several structural genes.


Human Mutation | 2011

Performance of mutation pathogenicity prediction methods on missense variants.

Janita Thusberg; Ayodeji Olatubosun; Mauno Vihinen

Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation in humans. The number of SNPs identified in the human genome is growing rapidly, but attaining experimental knowledge about the possible disease association of variants is laborious and time‐consuming. Several computational methods have been developed for the classification of SNPs according to their predicted pathogenicity. In this study, we have evaluated the performance of nine widely used pathogenicity prediction methods available on the Internet. The evaluated methods were MutPred, nsSNPAnalyzer, Panther, PhD‐SNP, PolyPhen, PolyPhen2, SIFT, SNAP, and SNPs&GO. The methods were tested with a set of over 40,000 pathogenic and neutral variants. We also assessed whether the type of original or substituting amino acid residue, the structural class of the protein, or the structural environment of the amino acid substitution, had an effect on the prediction performance. The performances of the programs ranged from poor (MCC 0.19) to reasonably good (MCC 0.65), and the results from the programs correlated poorly. The overall best performing methods in this study were SNPs&GO and MutPred, with accuracies reaching 0.82 and 0.81, respectively. Hum Mutat 32:1–11, 2011.


Immunological Reviews | 2009

Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain.

Abdalla J. Mohamed; Liang Yu; Carl-Magnus Bäckesjö; Leonardo Vargas; Rani Faryal; Alar Aints; Birger Christensson; Anna Berglöf; Mauno Vihinen; Beston F. Nore; C. I. Edvard Smith

Summary:  Bruton’s agammaglobulinemia tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important in B‐lymphocyte development, differentiation, and signaling. Btk is a member of the Tec family of kinases. Mutations in the Btk gene lead to X‐linked agammaglobulinemia (XLA) in humans and X‐linked immunodeficiency (Xid) in mice. Activation of Btk triggers a cascade of signaling events that culminates in the generation of calcium mobilization and fluxes, cytoskeletal rearrangements, and transcriptional regulation involving nuclear factor‐κB (NF‐κB) and nuclear factor of activated T cells (NFAT). In B cells, NF‐κB was shown to bind to the Btk promoter and induce transcription, whereas the B‐cell receptor‐dependent NF‐κB signaling pathway requires functional Btk. Moreover, Btk activation is tightly regulated by a plethora of other signaling proteins including protein kinase C (PKC), Sab/SH3BP5, and caveolin‐1. For example, the prolyl isomerase Pin1 negatively regulates Btk by decreasing tyrosine phosphorylation and steady state levels of Btk. It is intriguing that PKC and Pin1, both of which are negative regulators, bind to the pleckstrin homology domain of Btk. To this end, we describe here novel mutations in the pleckstrin homology domain investigated for their transforming capacity. In particular, we show that the mutant D43R behaves similar to E41K, already known to possess such activity.


Journal of Biological Chemistry | 2004

Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family.

Jonna Lehtonen; Bairong Shen; Mauno Vihinen; Angela Casini; Andrea Scozzafava; Claudiu T. Supuran; Anna-Kaisa Parkkila; Juha Saarnio; Antti J. Kivelä; Abdul Waheed; William S. Sly; Seppo Parkkila

The carbonic anhydrase (CA) gene family has been reported to consist of at least 11 enzymatically active members and a few inactive homologous proteins. Recent analyses of human and mouse databases provided evidence that human and mouse genomes contain genes for still another novel CA isozyme hereby named CA XIII. In the present study, we modeled the structure of human CA XIII. This model revealed a globular molecule with high structural similarity to cytosolic isozymes, CA I, II, and III. Recombinant mouse CA XIII showed catalytic activity similar to those of mitochondrial CA V and cytosolic CA I, with kcat/Km of 4.3 × 107 m–1 s–1, and kcat of 8.3 × 104 s–1. It is very susceptible to inhibition by sulfonamide and anionic inhibitors, with inhibition constants of 17 nm for acetazolamide, a clinically used sulfonamide, and of 0.25 μm, for cyanate, respectively. Using panels of cDNAs we evaluated human and mouse CA13 gene expression in a number of different tissues. In human tissues, positive signals were identified in the thymus, small intestine, spleen, prostate, ovary, colon, and testis. In mouse, positive tissues included the spleen, lung, kidney, heart, brain, skeletal muscle, and testis. We also investigated the cellular and subcellular localization of CA XIII in human and mouse tissues using an antibody raised against a polypeptide of 14 amino acids common for both human and mouse orthologues. Immunohistochemical staining showed a unique and widespread distribution pattern for CA XIII compared with the other cytosolic CA isozymes. In conclusion, the predicted amino acid sequence, structural model, distribution, and activity data suggest that CA XIII represents a novel enzyme, which may play important physiological roles in several organs.


Immunological Reviews | 2005

Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling

Jessica M. Lindvall; K. Emelie M. Blomberg; Jouni Väliaho; Leonardo Vargas; Juhana E. Heinonen; Anna Berglöf; Abdalla J. Mohamed; Beston F. Nore; Mauno Vihinen; C. I. Edvard Smith

Summary:  Brutons tyrosine kinase (Btk) is encoded by the gene that when mutated causes the primary immunodeficiency disease X‐linked agammaglobulinemia (XLA) in humans and X‐linked immunodeficiency (Xid) in mice. Btk is a member of the Tec family of protein tyrosine kinases (PTKs) and plays a vital, but diverse, modulatory role in many cellular processes. Mutations affecting Btk block B‐lymphocyte development. Btk is conserved among species, and in this review, we present the sequence of the full‐length rat Btk and find it to be analogous to the mouse Btk sequence. We have also analyzed the wealth of information compiled in the mutation database for XLA (BTKbase), representing 554 unique molecular events in 823 families and demonstrate that only selected amino acids are sensitive to replacement (P < 0.001). Although genotype–phenotype correlations have not been established in XLA, based on these findings, we hypothesize that this relationship indeed exists. Using short interfering‐RNA technology, we have previously generated active constructs downregulating Btk expression. However, application of recently established guidelines to enhance or decrease the activity was not successful, demonstrating the importance of the primary sequence. We also review the outcome of expression profiling, comparing B lymphocytes from XLA‐, Xid‐, and Btk‐knockout (KO) donors to healthy controls. Finally, in spite of a few genes differing in expression between Xid‐ and Btk‐KO mice, in vivo competition between cells expressing either mutation shows that there is no selective survival advantage of cells carrying one genetic defect over the other. We conclusively demonstrate that for the R28C‐missense mutant (Xid), there is no biologically relevant residual activity or any dominant negative effect versus other proteins.


Human Mutation | 2009

Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods.

Janita Thusberg; Mauno Vihinen

Many gene defects are relatively easy to identify experimentally, but obtaining information about the effects of sequence variations and elucidation of the detailed molecular mechanisms of genetic diseases will be among the next major efforts in mutation research. Amino acid substitutions may have diverse effects on protein structure and function; thus, a detailed analysis of the mutations is essential. Experimental study of the molecular effects of mutations is laborious, whereas useful and reliable information about the effects of amino acid substitutions can readily be obtained by theoretical methods. Experimentally defined structures and molecular modeling can be used as a basis for interpretation of the mutations. The effects of missense mutations can be analyzed even when the 3D structure of the protein has not been determined, although structure‐based analyses are more reliable. Structural analyses include studies of the contacts between residues, their implication for the stability of the protein, and the effects of the introduced residues. Investigations of steric and stereochemical consequences of substitutions provide insights on the molecular fit of the introduced residue. Mutations that change the electrostatic surface potential of a protein have wide‐ranging effects. Analyses of the effects of mutations on interactions with ligands and partners have been performed for elucidation of functional mutations. We have employed numerous methods for predicting the effects of amino acid substitutions. We discuss the applicability of these methods in the analysis of genes, proteins, and diseases to reveal protein structure–function relationships, which is essential to gain insights into disease genotype–phenotype correlations. Hum Mutat 0, 1–15, 2009.


PLOS Biology | 2015

Finding Our Way through Phenotypes

Andrew R. Deans; Suzanna E. Lewis; Eva Huala; Salvatore S. Anzaldo; Michael Ashburner; James P. Balhoff; David C. Blackburn; Judith A. Blake; J. Gordon Burleigh; Bruno Chanet; Laurel Cooper; Mélanie Courtot; Sándor Csösz; Hong Cui; Wasila M. Dahdul; Sandip Das; T. Alexander Dececchi; Agnes Dettai; Rui Diogo; Robert E. Druzinsky; Michel Dumontier; Nico M. Franz; Frank Friedrich; George V. Gkoutos; Melissa Haendel; Luke J. Harmon; Terry F. Hayamizu; Yongqun He; Heather M. Hines; Nizar Ibrahim

Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.


Biochemical Journal | 2005

Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase

Mika Hilvo; Martti Tolvanen; Amy L. Clark; Bairong Shen; Gul N. Shah; Abdul Waheed; Piia Halmi; Milla M Hänninen; Jonna M Hämäläinen; Mauno Vihinen; William S. Sly; Seppo Parkkila

The main function of CAs (carbonic anhydrases) is to participate in the regulation of acid-base balance. Although 12 active isoenzymes of this family had already been described, analyses of genomic databases suggested that there still exists another isoenzyme, CA XV. Sequence analyses were performed to identify those species that are likely to have an active form of this enzyme. Eight species had genomic sequences encoding CA XV, in which all the amino acid residues critical for CA activity are present. However, based on the sequence data, it was apparent that CA XV has become a non-processed pseudogene in humans and chimpanzees. RT-PCR (reverse transcriptase PCR) confirmed that humans do not express CA XV. In contrast, RT-PCR and in situ hybridization performed in mice showed positive expression in the kidney, brain and testis. A prediction of the mouse CA XV structure was performed. Phylogenetic analysis showed that mouse CA XV is related to CA IV. Therefore both of these enzymes were expressed in COS-7 cells and studied in parallel experiments. The results showed that CA XV shares several properties with CA IV, i.e. it is a glycosylated glycosylphosphatidylinositol-anchored membrane protein, and it binds CA inhibitor. The catalytic activity of CA XV is low, and the correct formation of disulphide bridges is important for the activity. Both specific and non-specific chaperones increase the production of active enzyme. The results suggest that CA XV is the first member of the alpha-CA gene family that is expressed in several species, but not in humans and chimpanzees.


FEBS Letters | 1994

Tec homology (TH) adjacent to the PH domain

Mauno Vihinen; Lennart Nilsson; C. I. Edvard Smith

The pleckstrin homology (PH) domain is extended in the Btk kinase family by a region designated the TH (Tec homology) domain, which consists of about 80 residues preceding the SH3 domain. The TH domain contains a conserved 27 amino acid stretch designated the Btk motif and a proline‐rich region. Sequence similarity was found to a putative Ras GTPase activating protein and a human interferon‐γ binding protein both in the PH domain and the Btk motif region. SLK1/SSP31 protein kinase and a non‐catalytic p85 subunit of PI‐3 kinase had similarity only with the proline rich region. The identification of a PH domain extension in some signal transduction proteins in different species suggests that this region is involved in protein—protein interactions.

Collaboration


Dive into the Mauno Vihinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Ollila

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge