Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maureen Coetzee is active.

Publication


Featured researches published by Maureen Coetzee.


Medical and Veterinary Entomology | 2000

Anopheles funestus resistant to pyrethroid insecticides in South Africa

K. Hargreaves; Lizette L. Koekemoer; Basil D. Brooke; Richard H. Hunt; J. Mthembu; Maureen Coetzee

Northern Kwazulu/Natal (KZN) Province of South Africa borders on southern Mozambique, between Swaziland and the Indian Ocean. To control malaria vectors in KZN, houses were sprayed annually with residual DDT 2 g/m2 until 1996 when the treatment changed to deltamethrin 20–25 mg/m2. At Ndumu (27°02′ S, 32°19′ E) the recorded malaria incidence increased more than six‐fold between 1995 and 1999. Entomological surveys during late 1999 found mosquitoes of the Anopheles funestus group (Diptera: Culicidae) resting in sprayed houses in some sectors of Ndumu area. This very endophilic vector of malaria had been eliminated from South Africa by DDT spraying in the 1950s, leaving the less endophilic An. arabiensis Patton as the only vector of known importance in KZN. Deltamethrin‐sprayed houses at Ndumu were checked for insecticide efficacy by bioassay using susceptible An. arabiensis (laboratory‐reared) that demonstrated 100% mortality. Members of the An. funestus group from Ndumu houses (29 males, 116 females) were identified by the rDNA PCR method and four species were found: 74 An. funestus Giles sensu stricto, 34 An. parensis Gillies, seven An. rivulorum Leeson and one An. leesoni Evans. Among An. funestus s.s. females, 5.4% (4/74) were positive for Plasmodium falciparum by ELISA and PCR tests. To test for pyrethroid resistance, mosquito adults were exposed to permethrin discriminating dosage and mortality scored 24 h post‐exposure: survival rates of wild‐caught healthy males were 5/10 An. funestus, 1/9 An. rivulorum and 0/2 An. parensis; survival rates of laboratory‐reared adult progeny from 19 An. funestus females averaged 14% (after 1 h exposure to 1% permethrin 25 : 75 cis : trans on papers in WHO test kits) and 27% (after 30 min in a bottle with 25 μg permethrin 40 : 60 cis : trans). Anopheles funestus families showing > 20% survival in these two resistance test procedures numbered 5/19 and 12/19, respectively. Progeny from 15 of the families were tested on 4% DDT impregnated papers and gave 100% mortality. Finding these proportions of pyrethroid‐resistant An. funestus, associated with a malaria upsurge at Ndumu, has serious implications for malaria vector control operations in southern Africa.


Parasitology Today | 2000

Distribution of African Malaria Mosquitoes Belonging to the Anopheles gambiae Complex

Maureen Coetzee; M.H. Craig; D. le Sueur

The distribution of malaria vector mosquitoes, especially those belonging to species complexes that contain non-vector species, is important for strategic planning of malaria control programmes. Geographical information systems have allowed researchers to visualize distribution data on maps together with environmental parameters, such as rainfall and temperature. Here, Maureen Coetzee, Marlies Craig and David le Sueur review our current knowledge on the distribution of the members of the Anopheles gambiae complex.


Parasites & Vectors | 2010

The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

Marianne E. Sinka; Michael J. Bangs; Sylvie Manguin; Maureen Coetzee; Charles M. Mbogo; Janet Hemingway; Anand P. Patil; Will H Temperley; Peter W. Gething; Caroline W. Kabaria; Robi M Okara; Thomas P. Van Boeckel; H. Charles J. Godfray; Ralph E. Harbach; Simon I. Hay

BackgroundThis is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.ResultsA contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.ConclusionsThe predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messeae, An. (Ano.) sacharovi, An. (Cel.) sergentii and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control.


Parasites & Vectors | 2012

A global map of dominant malaria vectors

Marianne E. Sinka; Michael J. Bangs; Sylvie Manguin; Yasmin Rubio-Palis; Theeraphap Chareonviriyaphap; Maureen Coetzee; Charles M. Mbogo; Janet Hemingway; Anand P. Patil; William H Temperley; Peter W. Gething; Caroline W. Kabaria; Thomas R. Burkot; Ralph E. Harbach; Simon I. Hay

BackgroundGlobal maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach.MethodsHere we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes.ResultsOur global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance.ConclusionsThe competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012.


Malaria Journal | 2009

Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem

Hilary Ranson; Hiba Abdallah; Athanase Badolo; Wamdaogo M. Guelbeogo; Clément Kerah-Hinzoumbé; Elise Yangalbé-Kalnoné; N'Fale Sagnon; Frédéric Simard; Maureen Coetzee

BackgroundInsecticide resistance in malaria vectors is a growing concern in many countries which requires immediate attention because of the limited chemical arsenal available for vector control. The current extent and distribution of this resistance in many parts of the continent is unknown and yet such information is essential for the planning of effective malaria control interventions.MethodsIn 2008, a network was established, with financial support from WHO/TDR, to investigate the extent of insecticide resistance in malaria vectors in five African countries. Here, the results of bioassays on Anopheles gambiae sensu lato from two rounds of monitoring from 12 sentinel sites in three of the partner countries are reported.ResultsResistance is very heterogeneous even over relatively small distances. Furthermore, in some sites, large differences in mortality rates were observed during the course of the malaria transmission season. Using WHO diagnostic doses, all populations from Burkina Faso and Chad and two of the four populations from Sudan were classified as resistant to permethrin and/or deltamethrin. Very high frequencies of DDT resistance were found in urban areas in Burkina Faso and Sudan and in a cotton-growing district in Chad. In areas where both An. gambiae s.s. and Anopheles arabiensis were present, resistance was found in both species, although generally at a higher frequency in An gambiae s.s. Anopheles gambiae s.l. remains largely susceptible to the organophosphate fenitrothion and the carbamate bendiocarb in the majority of the sentinel sites with the exception of two sites in Burkina Faso. In the cotton-growing region of Soumousso in Burkina Faso, the vector population is resistant to all four classes of insecticide available for malaria control.ConclusionsPossible factors influencing the frequency of resistant individuals observed in the sentinel sites are discussed. The results of this study highlight the importance of standardized longitudinal insecticide resistance monitoring and the urgent need for studies to monitor the impact of this resistance on malaria vector control activities.


Bulletin of Entomological Research | 2001

Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae).

Basil D. Brooke; G. Kloke; Richard H. Hunt; Lizette L. Koekemoer; E.A. Tem; M.E. Taylor; Graham J. Small; Janet Hemingway; Maureen Coetzee

Anopheles funestus Giles has been implicated as a major malaria vector in sub-Saharan Africa where pyrethroid insecticides are widely used in agriculture and public health. Samples of this species from northern Kwazulu/Natal in South Africa and the Beluluane region of southern Mozambique showed evidence of resistance to pyrethroid insecticides. Insecticide exposure, synergist and biochemical assays conducted on A. funestus suggested that elevated levels of mixed function oxidases were responsible for the detoxification of pyrethroids in resistant mosquitoes in these areas. The data suggested that this mechanism was also conferring cross-resistance to the carbamate insecticide propoxur.


Genome Research | 2008

Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector.

Charles S. Wondji; Helen Irving; John C. Morgan; Neil F. Lobo; Frank H. Collins; Richard H. Hunt; Maureen Coetzee; Janet Hemingway; Hilary Ranson

Pyrethroid resistance in Anopheles funestus is a potential obstacle to malaria control in Africa. Tools are needed to detect resistance in field populations. We have been using a positional cloning approach to identify the major genes conferring pyrethroid resistance in this vector. A quantitative trait locus (QTL) named rp1 explains 87% of the genetic variance in pyrethroid susceptibility in two families from reciprocal crosses between susceptible and resistant strains. Two additional QTLs of minor effect, rp2 and rp3, were also detected. We sequenced a 120-kb BAC clone spanning the rp1 QTL and identified 14 protein-coding genes and one putative pseudogene. Ten of the 14 genes encoded cytochrome P450s, and expression analysis indicated that four of these P450s were differentially expressed between susceptible and resistant strains. Furthermore, two of these genes, CYP6P9 and CYP6P4, which are 25 and 51 times overexpressed in resistant females, are tandemly duplicated in the BAC clone as well as in laboratory and field samples, suggesting that P450 gene duplication could contribute to pyrethroid resistance in An. funestus. Single nucleotide polymorphisms (SNPs) were identified within CYP6P9 and CYP6P4, and genotyping of the progeny of the genetic crosses revealed a maximum penetrance value f(2) = 1, confirming that these SNPs are valid resistance markers in the laboratory strains. This serves as proof of principle that a DNA-based diagnostic test could be designed to trace metabolic resistance in field populations. This will be a major advance for insecticide resistance management in malaria vectors, which requires the early detection of resistance alleles.


Medical and Veterinary Entomology | 2003

Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa.

K. Hargreaves; Richard H. Hunt; Basil D. Brooke; J. Mthembu; M.M Weeto; T. S. Awolola; Maureen Coetzee

The malaria control programme of KwaZulu‐Natal Province, South Africa, includes Mamfene and Mlambo communities. Western‐type houses there are currently sprayed with deltamethrin, whereas traditional houses are sprayed with DDT for malaria control. In 2002, mosquitoes of the Anopheles gambiae complex (Diptera: Culicidae) were collected from DDT‐sprayed houses, by window exit traps, and from man‐baited nets outdoors. Larval collections were also carried out at Mzinweni Pan near Mlambo. Species of the An. gambiae complex were identified by rDNA polymerase chain reaction assay. The majority of samples collected by window trap and baited nets were identified as the malaria vector An. arabiensis Patton, with a few An. merus Dönitz and An. quadriannulatus (Theobald). The larval collections were predominantly An. quadriannulatus with a small number of An. arabiensis. Standard WHO insecticide susceptibility tests using 4% DDT and 0.05% deltamethrin were performed on both wild‐caught females and laboratory‐reared progeny from wild‐caught females. Wild‐caught An. arabiensis samples from window traps gave 63% and 100% mortality 24‐h post‐exposure to DDT or deltamethrin, respectively. Wild‐caught An. arabiensis samples from man‐baited net traps gave 81% mortality 24‐h post‐exposure to DDT. The F1 progeny from 22 An. arabiensis females showed average mortality of 86.5% 24‐h post‐exposure to DDT. Less than 80% mortality was recorded from five of these families. Biochemical analyses of samples from each of the families revealed comparatively high levels of glutathione‐S‐transferases and non‐specific esterases in some families, but without significant correlation to bioassay results. Wild‐caught An. quadriannulatus larvae were reared through to adults and assayed on 4% DDT, giving 47% (n = 36) mortality 24‐h post‐exposure. Finding DDT resistance in the vector An. arabiensis, close to the area where we previously reported pyrethroid‐resistance in the vector An. funestus Giles, indicates an urgent need to develop a strategy of insecticide resistance management for the malaria control programmes of southern Africa.


Medical and Veterinary Entomology | 2005

Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus.

Richard H. Hunt; Basil D. Brooke; C. Pillay; Lizette L. Koekemoer; Maureen Coetzee

Abstract.  A laboratory colony of Anopheles funestus Giles (Diptera: Culicidae) was established in 2000 from material collected from southern Mozambique where pyrethroid resistance had been demonstrated in the wild population. A subsample of the colony was selected for pyrethroid resistance using 0.1% lambda‐cyhalothrin. Bioassay susceptibility tests in subsequent generations F2 to F4 showed increased resistance with each successive generation. Survival of individual mosquitoes fed only on 10% sugar solution, increased with age up to 4 days, but by day 10 had decreased significantly. However, females that had been mated and given bloodmeals showed no such increase in mortality with age. Biochemical analysis of resistant and susceptible individuals showed increased monooxygenase and glutathione S‐transferase activity but no significant correlation with age of the mosquitoes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Fungal infection counters insecticide resistance in African malaria mosquitoes

Marit Farenhorst; Joel Mouatcho; Christophe K. Kikankie; Basil D. Brooke; Richard H. Hunt; Matthew B. Thomas; Lizette L. Koekemoer; Bart G. J. Knols; Maureen Coetzee

The evolution of insecticide resistance in mosquitoes is threatening the effectiveness and sustainability of malaria control programs in various parts of the world. Through their unique mode of action, entomopathogenic fungi provide promising alternatives to chemical control. However, potential interactions between fungal infection and insecticide resistance, such as cross-resistance, have not been investigated. We show that insecticide-resistant Anopheles mosquitoes remain susceptible to infection with the fungus Beauveria bassiana. Four different mosquito strains with high resistance levels against pyrethroids, organochlorines, or carbamates were equally susceptible to B. bassiana infection as their baseline counterparts, showing significantly reduced mosquito survival. Moreover, fungal infection reduced the expression of resistance to the key public health insecticides permethrin and dichlorodiphenyltrichloroethane. Mosquitoes preinfected with B. bassiana or Metarhizium anisopliae showed a significant increase in mortality after insecticide exposure compared with uninfected control mosquitoes. Our results show a high potential utility of fungal biopesticides for complementing existing vector control measures and provide products for use in resistance management strategies.

Collaboration


Dive into the Maureen Coetzee's collaboration.

Top Co-Authors

Avatar

Richard H. Hunt

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Lizette L. Koekemoer

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Basil D. Brooke

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Hilary Ranson

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Janet Hemingway

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riann Christian

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

John Govere

World Health Organization

View shared research outputs
Top Co-Authors

Avatar

Charles S. Wondji

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Aaron Mabuza

University of Cape Town

View shared research outputs
Researchain Logo
Decentralizing Knowledge