Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maureen Hattersley is active.

Publication


Featured researches published by Maureen Hattersley.


Molecular Cancer Research | 2012

Inhibition of the Hedgehog Pathway Targets the Tumor-Associated Stroma in Pancreatic Cancer

Rosa F. Hwang; Todd Moore; Maureen Hattersley; Meghan Scarpitti; Bin Yang; Erik Devereaux; Thiruvengadam Arumugam; Baoan Ji; Craig D. Logsdon; Jeffrey L. Brown; Robert Godin

Purpose: The Hedgehog (Hh) pathway has emerged as an important pathway in multiple tumor types and is thought to be dependent on a paracrine signaling mechanism. The purpose of this study was to determine the role of pancreatic cancer-associated fibroblasts (human pancreatic stellate cells, HPSCs) in Hh signaling. In addition, we evaluated the efficacy of a novel Hh antagonist, AZD8542, on tumor progression with an emphasis on the role of the stroma compartment. Experimental Design: Expression of Hh pathway members and activation of the Hh pathway were analyzed in both HPSCs and pancreatic cancer cells. We tested the effects of Smoothened (SMO) inhibition with AZD8542 on tumor growth in vivo using an orthotopic model of pancreatic cancer containing varying amounts of stroma. Results: HPSCs expressed high levels of SMO receptor and low levels of Hh ligands, whereas cancer cells showed the converse expression pattern. HPSC proliferation was stimulated by Sonic Hedgehog with upregulation of downstream GLI1 mRNA. These effects were abrogated by AZD8542 treatment. In an orthotopic model of pancreatic cancer, AZD8542 inhibited tumor growth only when HPSCs were present, implicating a paracrine signaling mechanism dependent on stroma. Further evidence of paracrine signaling of the Hh pathway in prostate and colon cancer models is provided, demonstrating the broader applicability of our findings. Conclusion: Based on the use of our novel human-derived pancreatic cancer stellate cells, our results suggest that Hh-targeted therapies primarily affect the tumor-associated stroma, rather than the epithelial compartment. Mol Cancer Res; 10(9); 1147–57. ©2012 AACR.


Molecular Cancer Therapeutics | 2016

AZD5153: a novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies

Garrett W. Rhyasen; Maureen Hattersley; Yi Yao; Austin Dulak; Wenxian Wang; Philip Petteruti; Ian L. Dale; Scott Boiko; Tony Cheung; Jingwen Zhang; Shenghua Wen; Lillian Castriotta; Deborah Lawson; Mike Collins; Larry Bao; Miika Ahdesmaki; Graeme Walker; Greg O'Connor; Tammie C. Yeh; Alfred A. Rabow; Jonathan R. Dry; Corinne Reimer; Paul Lyne; Gordon B. Mills; Stephen Fawell; Michael J. Waring; Michael Zinda; Edwin Clark; Huawei Chen

The bromodomain and extraterminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Pharmacological targeting of BRD4 bromodomains by small molecule inhibitors has proven to be an effective means to disrupt aberrant transcriptional programs critical for tumor growth and/or survival. Herein, we report AZD5153, a potent, selective, and orally available BET/BRD4 bromodomain inhibitor possessing a bivalent binding mode. Unlike previously described monovalent inhibitors, AZD5153 ligates two bromodomains in BRD4 simultaneously. The enhanced avidity afforded through bivalent binding translates into increased cellular and antitumor activity in preclinical hematologic tumor models. In vivo administration of AZD5153 led to tumor stasis or regression in multiple xenograft models of acute myeloid leukemia, multiple myeloma, and diffuse large B-cell lymphoma. The relationship between AZD5153 exposure and efficacy suggests that prolonged BRD4 target coverage is a primary efficacy driver. AZD5153 treatment markedly affects transcriptional programs of MYC, E2F, and mTOR. Of note, mTOR pathway modulation is associated with cell line sensitivity to AZD5153. Transcriptional modulation of MYC and HEXIM1 was confirmed in AZD5153-treated human whole blood, thus supporting their use as clinical pharmacodynamic biomarkers. This study establishes AZD5153 as a highly potent, orally available BET/BRD4 inhibitor and provides a rationale for clinical development in hematologic malignancies. Mol Cancer Ther; 15(11); 2563–74. ©2016 AACR.


Journal of Medicinal Chemistry | 2013

Discovery of a Novel Class of Dimeric Smac Mimetics as Potent IAP Antagonists Resulting in a Clinical Candidate for the Treatment of Cancer (AZD5582)

Edward J. Hennessy; Ammar Adam; Brian Aquila; Castriotta Lm; Donald J. Cook; Maureen Hattersley; Alexander Hird; Huntington C; Victor Kamhi; Laing Nm; Danyang Li; Terry MacIntyre; Omer Ca; Oza; Patterson T; Repik G; Michael T. Rooney; Jamal C. Saeh; Li Sha; Melissa Vasbinder; Haiyun Wang; Whitston D

A series of dimeric compounds based on the AVPI motif of Smac were designed and prepared as antagonists of the inhibitor of apoptosis proteins (IAPs). Optimization of cellular potency, physical properties, and pharmacokinetic parameters led to the identification of compound 14 (AZD5582), which binds potently to the BIR3 domains of cIAP1, cIAP2, and XIAP (IC50 = 15, 21, and 15 nM, respectively). This compound causes cIAP1 degradation and induces apoptosis in the MDA-MB-231 breast cancer cell line at subnanomolar concentrations in vitro. When administered intravenously to MDA-MB-231 xenograft-bearing mice, 14 results in cIAP1 degradation and caspase-3 cleavage within tumor cells and causes substantial tumor regressions following two weekly doses of 3.0 mg/kg. Antiproliferative effects are observed with 14 in only a small subset of the over 200 cancer cell lines examined, consistent with other published IAP inhibitors. As a result of its in vitro and in vivo profile, 14 was nominated as a candidate for clinical development.


Clinical Cancer Research | 2015

The MET inhibitor AZD6094 (Savolitinib, HMPL-504) induces regression in papillary renal cell carcinoma patient derived xenograft models

Alwin Schuller; Evan Barry; Rhys D.O. Jones; Ryan Henry; Melanie M. Frigault; Garry Beran; David Linsenmayer; Maureen Hattersley; Aaron Smith; Joanne Wilson; Stefano Cairo; Olivier Deas; Delphine Nicolle; Ammar Adam; Michael Zinda; Corinne Reimer; Stephen Fawell; Edwin Clark; Celina D'Cruz

Purpose: Papillary renal cell carcinoma (PRCC) is the second most common cancer of the kidney and carries a poor prognosis for patients with nonlocalized disease. The HGF receptor MET plays a central role in PRCC and aberrations, either through mutation, copy number gain, or trisomy of chromosome 7 occurring in the majority of cases. The development of effective therapies in PRCC has been hampered in part by a lack of available preclinical models. We determined the pharmacodynamic and antitumor response of the selective MET inhibitor AZD6094 in two PRCC patient-derived xenograft (PDX) models. Experimental Design: Two PRCC PDX models were identified and MET mutation status and copy number determined. Pharmacodynamic and antitumor activity of AZD6094 was tested using a dose response up to 25 mg/kg daily, representing clinically achievable exposures, and compared with the activity of the RCC standard-of-care sunitinib (in RCC43b) or the multikinase inhibitor crizotinib (in RCC47). Results: AZD6094 treatment resulted in tumor regressions, whereas sunitinib or crizotinib resulted in unsustained growth inhibition. Pharmacodynamic analysis of tumors revealed that AZD6094 could robustly suppress pMET and the duration of target inhibition was dose related. AZD6094 inhibited multiple signaling nodes, including MAPK, PI3K, and EGFR. Finally, at doses that induced tumor regression, AZD6094 resulted in a dose- and time-dependent induction of cleaved PARP, a marker of cell death. Conclusions: Data presented provide the first report testing therapeutics in preclinical in vivo models of PRCC and support the clinical development of AZD6094 in this indication. Clin Cancer Res; 21(12); 2811–9. ©2015 AACR.


Bioorganic & Medicinal Chemistry Letters | 2009

3-amido-4-anilinoquinolines as CSF-1R kinase inhibitors 2: Optimization of the PK profile.

David Scott; Kirsten Bell; Cheryl T. Campbell; Donald J. Cook; Les A. Dakin; David J. Del Valle; Lisa Drew; Thomas Gero; Maureen Hattersley; Charles A. Omer; Boris Tyurin; Xiaolan Zheng

The optimization of compounds from the 3-amido-4-anilinoquinolines series of CSF-1R kinase inhibitors is described. The series has excellent activity and kinase selectivity. Excellent physical properties and rodent PK profiles were achieved through the introduction of cyclic amines at the quinoline 6-position. Compounds with good activity in a mouse PD model measuring inhibition of pCSF-1R were identified.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyridyl and thiazolyl bisamide CSF-1R inhibitors for the treatment of cancer.

David Scott; Brian Aquila; Geraldine Bebernitz; Donald J. Cook; Les A. Dakin; Tracy L. Deegan; Maureen Hattersley; Stephanos Ioannidis; Paul Lyne; Charles A. Omer; Minwei Ye; Xiaolan Zheng

The bisamide class of kinase inhibitors was identified as being active against CSF-1R. The synthesis and SAR of pyridyl and thiazolyl bisamides are reported, along with the pharmacokinetic properties and in vivo activity of selected examples.


Journal of Medicinal Chemistry | 2016

Optimization of a Series of Bivalent Triazolopyridazine Based Bromodomain and Extraterminal Inhibitors: The Discovery of (3R)-4-[2-[4-[1-(3-Methoxy-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)-4-piperidyl]phenoxy]ethyl]-1,3-dimethyl-piperazin-2-one (AZD5153)

Robert Hugh Bradbury; Rowena Callis; Gregory Richard Carr; Huawei Chen; Edwin Clark; Lyman Feron; Steve C. Glossop; Mark A. Graham; Maureen Hattersley; Chris Jones; Scott Lamont; Gilles Ouvry; Anil Patel; Joe Patel; Alfred A. Rabow; Craig A. Roberts; Stephen Stokes; Natalie Stratton; Graeme Walker; Lara Ward; David Whalley; David Whittaker; Gail Wrigley; Michael J. Waring

Here we report the discovery and optimization of a series of bivalent bromodomain and extraterminal inhibitors. Starting with the observation of BRD4 activity of compounds from a previous program, the compounds were optimized for BRD4 potency and physical properties. The optimized compound from this campaign exhibited excellent pharmacokinetic profile and exhibited high potency in vitro and in vivo effecting c-Myc downregulation and tumor growth inhibition in xenograft studies. This compound was selected as the development candidate, AZD5153. The series showed enhanced potency as a result of bivalent binding and a clear correlation between BRD4 activity and cellular potency.


Molecular Cancer Therapeutics | 2017

Optimizing Therapeutic Effect of Aurora B Inhibition in Acute Myeloid Leukemia with AZD2811 Nanoparticles

Nicolas Floc'h; Susan Ashton; Paula Taylor; Dawn Trueman; Emily Harris; Rajesh Odedra; Kim Maratea; Nicola Derbyshire; Jacqueline Caddy; Vivien Jacobs; Maureen Hattersley; Shenghua Wen; Nicola Curtis; James Pilling; Elizabeth Janet Pease; Simon T. Barry

Barasertib (AZD1152), a highly potent and selective aurora kinase B inhibitor, gave promising clinical activity in elderly acute myeloid leukemia (AML) patients. However, clinical utility was limited by the requirement for a 7-day infusion. Here we assessed the potential of a nanoparticle formulation of the selective Aurora kinase B inhibitor AZD2811 (formerly known as AZD1152-hQPA) in preclinical models of AML. When administered to HL-60 tumor xenografts at a single dose between 25 and 98.7 mg/kg, AZD2811 nanoparticle treatment delivered profound inhibition of tumor growth, exceeding the activity of AZD1152. The improved antitumor activity was associated with increased phospho-histone H3 inhibition, polyploidy, and tumor cell apoptosis. Moreover, AZD2811 nanoparticles increased antitumor activity when combined with cytosine arabinoside. By modifying dose of AZD2811 nanoparticle, therapeutic benefit in a range of preclinical models was further optimized. At high-dose, antitumor activity was seen in a range of models including the MOLM-13 disseminated model. At these higher doses, a transient reduction in bone marrow cellularity was observed demonstrating the potential for the formulation to target residual disease in the bone marrow, a key consideration when treating AML. Collectively, these data establish that AZD2811 nanoparticles have activity in preclinical models of AML. Targeting Aurora B kinase with AZD2811 nanoparticles is a novel approach to deliver a cell-cycle inhibitor in AML, and have potential to improve on the clinical activity seen with cell-cycle agents in this disease. Mol Cancer Ther; 16(6); 1031–40. ©2017 AACR.


CPT: Pharmacometrics & Systems Pharmacology | 2017

Translational Modeling of Drug‐Induced Myelosuppression and Effect of Pretreatment Myelosuppression for AZD5153, a Selective BRD4 Inhibitor

Teresa Collins; Maureen Hattersley; James W.T. Yates; Edwin Clark; Madhu Mondal; Jerome T. Mettetal

In this work, we evaluate the potential risk of thrombocytopenia in man for a BRD4 inhibitor, AZD5153, based on the platelet count decreases from a Han Wistar rat study. The effects in rat were modeled and used to make clinical predictions for human populations with healthy baseline blood counts. At doses >10 mg, a dose‐dependent effect on circulating platelets is expected, with similar predicted changes for both q.d. and b.i.d. dose schedules. These results suggest that at predicted efficacious doses, AZD5153 is likely to have some reductions in the clinical platelet counts, but within the normal range at projected efficacious doses. The model was then extended to incorporate preexisting myelosuppression where bone marrow function is inhibited by acute myeloid leukemia. Under these conditions, duration of platelet count recovery has the potential to be prolonged due to drug‐induced myelosuppression.


Clinical Cancer Research | 2017

Identification of CCR2 and CD180 as Robust Pharmacodynamic Tumor and Blood Biomarkers for Clinical Use with BRD4/BET Inhibitors

Tammie C. Yeh; Greg O'Connor; Philip Petteruti; Austin Dulak; Maureen Hattersley; J. Carl Barrett; Huawei Chen

Purpose: AZD5153 is a novel BRD4/BET inhibitor with a distinctive bivalent bromodomain binding mode. To support its clinical development, we identified pharmacodynamic (PD) biomarkers for use in clinical trials to establish target engagement. Experimental Design: CCR2 and CD180 mRNAs, initially identified from whole transcriptome profiling, were further evaluated by quantitative PCR in hematologic cell lines, xenografts, and whole blood from rat, healthy volunteers, and patients with cancer. MYC and HEXIM1 mRNAs were also evaluated. Results: RNA-sequencing data showed consistent decreases in CCR2/CD180 expression across multiple hematologic cell lines upon AZD5153 treatment. Evaluation of dose dependence in MV4,11 cells confirmed activity at clinically relevant concentrations. In vivo downregulation of CCR2/CD180 mRNAs (>80%) was demonstrated in MV4,11 and KMS-11 xenograft tumors at efficacious AZD5153 doses. Consistent with in vitro rat blood data, an in vivo rat study confirmed greater inhibition of CCR2/CD180 mRNA in whole blood versus MYC at an efficacious dose. Finally, in vitro treatment of whole blood from healthy volunteers and patients with cancer demonstrated, in contrast to MYC, almost complete downregulation of CCR2/CD180 at predicted clinically achievable concentrations. Conclusions: Our data strongly support the use of CCR2 and CD180 mRNAs as whole blood PD biomarkers for BRD4 inhibitors, especially in situations where paired tumor biopsies are unavailable. In addition, they can be used as tumor-based PD biomarkers for hematologic tumors. MYC mRNA is useful as a hematologic tumor-based biomarker but suboptimal as a whole blood biomarker. Utility of HEXIM1 mRNA may be limited to higher concentrations. Clin Cancer Res; 23(4); 1025–35. ©2017 AACR.

Collaboration


Dive into the Maureen Hattersley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon B. Mills

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge