Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maureen Maughan is active.

Publication


Featured researches published by Maureen Maughan.


Vaccine | 2009

Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers.

David I. Bernstein; Elizabeth A. Reap; Kevin S Katen; Aubrey D Watson; Kaitlin Smith; Pamela K Norberg; Robert A. Olmsted; Amy Hoeper; John Morris; Sarah Negri; Maureen Maughan; Jeffrey D. Chulay

Development of a cytomegalovirus (CMV) vaccine is a priority. We evaluated a two component alphavirus replicon particle vaccine expressing CMV gB or a pp65/IE1 fusion protein, previously shown to induce robust antibody and cellular immune responses in mice, in a randomized, double-blind Phase 1 clinical trial in CMV seronegative subjects. Forty subjects received a lower dose (LD) or higher dose (HD) of vaccine or placebo by intramuscular or subcutaneous injection at Weeks 0, 8 and 24. The vaccine was well tolerated, with mild to moderate local reactogenicity, minimal systemic reactogenicity, and no clinically important changes in laboratory parameters. All vaccine recipients developed ex vivo, direct IFN-gamma ELISPOT responses to CMV antigens (maximal mean spot-forming cells per 10(6) PBMC in LD and HD groups of 348 and 504 for pp65, 83 and 113 for IE1, and 138 and 114 for gB), and neutralizing antibodies (maximal geometric mean titer 110 with LD and 218 with HD). Polyfunctional CD4(+) and CD8(+) T cell responses were detected by polychromatic flow cytometry. This alphavirus replicon particle vaccine was safe and induced neutralizing antibody and multifunctional T cell responses against three CMV antigens that are important targets for protective immunity.


AIDS Research and Human Retroviruses | 2003

Characterization and Selection of HIV-1 Subtype C Isolates for Use in Vaccine Development

Carolyn Williamson; Lynn Morris; Maureen Maughan; Li-Hua Ping; Sergey Dryga; Robin Thomas; Elizabeth A. Reap; Tonie Cilliers; Joanne van Harmelen; Álvaro Pascual; Gita Ramjee; Glenda E. Gray; Robert E. Johnston; Salim Safurdeen. Abdool Karim; Ronald Swanstrom

HIV-1 genetic diversity among circulating strains presents a major challenge for HIV-1 vaccine development, particularly for developing countries where less sequence information is available. To identify representative viruses for inclusion in candidate vaccines targeted for South Africa, we applied an efficient sequence survey strategy to samples from recently and chronically infected persons residing in potential vaccine trial sites. All 111 sequences were subtype C, including 30 partial gag, 26 partial pol, 27 V2-V3 env, and 28 V5-partial gp41 sequences. Of the 10 viruses cultured from recently infected individuals, 9 were R5 and 1 was R5X4. Two isolates, Du151 and Du422, collected within 2 months of infection, were selected as vaccine strains on the basis of their amino acid similarity to a derived South African consensus sequence The selection of recently transmitted R5 isolates for vaccine design may provide an advantage in a subtype C R5-dominant epidemic. The full-length Du422 gag and Du151 pol and env genes were cloned into the Venezuelan equine encephalitis (VEE) replicon particle (VRP) expression system. Du422 Gag protein expressed from the VRP accumulated to a high level and was immunogenic as demonstrated by cytotoxic T lymphocyte responses in mice vaccinated with gag-VRPs. Optimization of codon use for VRP expression in human cells did not enhance expression of the gag gene. The cloned Du151 env gene encoded a functional protein as demonstrated by fusion of VRP-infected cells with cells expressing CD4 and CCR5. Genes identified in this study have been incorporated into the VEE VRP candidate vaccines targeted for clinical trial in South Africa.


Iubmb Life | 2002

Alphavirus Replicon Particles as Candidate HIV Vaccines

Nancy L. Davis; Ande West; Elizabeth A. Reap; Gene H. MacDonald; Martha Collier; Sergey Dryga; Maureen Maughan; Mary J. Connell; Christopher M. Walker; Kathryn M. McGrath; Chad Cecil; Li Hua Ping; Jeffrey A. Frelinger; Robert A. Olmsted; Paula Keith; Ronald Swanstrom; Carolyn Williamson; Philip R. Johnson; David C. Montefiori; Robert E. Johnston

Replicon particles based on Venezuelan equine encephalitis virus (VEE) contain a self‐replicating RNA encoding the VEE replicase proteins and expressing a gene of interest in place of the viral structural protein genes. Structural proteins for packaging of replicon RNA into VEE replicon particles (VRPs) are expressed from separate helper RNAs. Aspects of the biology of VEE that are exploited in VRP vaccines include 1) expression of very high levels of immunogen, 2) expression of immunizing proteins in cells in the draining lymph node, and 3) the ability to induce mucosal immunity from a parental inoculation. Results of experiments with VRPs expressing green fluorescent protein or influenza virus hemagglutinin (HA) demonstrated that specific mutations in the VRP envelope glycoproteins affect both targeting in the draining lymph node and efficiency of the immune response in mice. VRPs expressing either the matrix‐capsid portion of Gag, the full‐length envelope gp160, or the secreted gp140 of cloned SIVsm H‐4i were mixed in a cocktail and used to immunize macaques at 0, 1, and 4 months. Neutralizing antibodies against SIVsm H‐4 were induced in 6 of 6 vaccinates and CTL in 4 of 6. An intrarectal challenge with the highly pathogenic SIVsm E660 was given at 5 months. A vaccine effect was seen in reduced peak virus loads, reduced virus loads both at set point and at 41 weeks postchallenge, and preserved or increased CD4 counts compared to controls. A candidate VRP HIV vaccine expressing Clade C Gag contains a sequence that is very close to the South African Clade C consensus and was selected from a recent seroconverter in the Durban cohort to represent currently circulating genotypes in South Africa. A GMP lot of this vaccine has been manufactured and tested for a phase I trial in the first months of 2002.


Breast Cancer Research | 2004

Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model.

Yesim Eralp; Xiaoyan Wang; Jian-Ping Wang; Maureen Maughan; John M. Polo; Lawrence B Lachman

IntroductionThe purpose of the present study was to determine whether cytotoxic chemotherapeutic agents administered prior to immunotherapy with gene vaccines could augment the efficacy of the vaccines.MethodsMice were injected in the mammary fat pad with an aggressive breast tumor cell line that expresses HER2/neu. The mice were treated 3 days later with a noncurative dose of either doxorubicin or paclitaxel, and the following day with a gene vaccine to HER2/neu. Two more doses of vaccine were given 14 days apart. Two types of gene vaccines were tested: a plasmid vaccine encoding a self-replicating RNA (replicon) of Sindbis virus (SINCP), in which the viral structural proteins were replaced by the gene for neu; and a viral replicon particle derived from an attenuated strain of Venezuelan equine encephalitis virus, containing a replicon RNA in which the Venezuelan equine encephalitis virus structural proteins were replaced by the gene for neu.ResultsNeither vaccination alone nor chemotherapy alone significantly reduced the growth of the mammary carcinoma. In contrast, chemotherapy followed by vaccination reduced tumor growth by a small, but significant amount. Antigen-specific CD8+ T lymphocytes were induced by the combined treatment, indicating that the control of tumor growth was most probably due to an immunological mechanism. The results demonstrated that doxorubicin and paclitaxel, commonly used chemotherapeutic agents for the treatment of breast cancer, when used at immunomodulating doses augmented the antitumor efficacy of gene vaccines directed against HER2/neu.ConclusionsThe combination of chemotherapeutic agents plus vaccine immunotherapy may induce a tumor-specific immune response that could be beneficial for the adjuvant treatment of patients with minimal residual disease. The regimen warrants further evaluation in a clinical setting.


Clinical Cancer Research | 2005

Comparison of Two Cancer Vaccines Targeting Tyrosinase: Plasmid DNA and Recombinant Alphavirus Replicon Particles

Stacie M. Goldberg; Shirley Bartido; Jason P. Gardner; José A. Guevara-Patiño; Stephanie C. Montgomery; Miguel-Angel Perales; Maureen Maughan; JoAnn Dempsey; Gerald P. Donovan; William C. Olson; Alan N. Houghton; Jedd D. Wolchok

Purpose: Immunization of mice with xenogeneic DNA encoding human tyrosinase-related proteins 1 and 2 breaks tolerance to these self-antigens and leads to tumor rejection. Viral vectors used alone or in heterologous DNA prime/viral boost combinations have shown improved responses to certain infectious diseases. The purpose of this study was to compare viral and plasmid DNA in combination vaccination strategies in the context of a tumor antigen. Experimental Design: Using tyrosinase as a prototypical differentiation antigen, we determined the optimal regimen for immunization with plasmid DNA. Then, using propagation-incompetent alphavirus vectors (virus-like replicon particles, VRP) encoding tyrosinase, we tested different combinations of priming with DNA or VRP followed by boosting with VRP. We subsequently followed antibody production, T-cell response, and tumor rejection. Results: T-cell responses to newly identified mouse tyrosinase epitopes were generated in mice immunized with plasmid DNA encoding human (xenogeneic) tyrosinase. In contrast, when VRP encoding either mouse or human tyrosinase were used as single agents, antibody and T-cell responses and a significant delay in tumor growth in vivo were observed. Similarly, a heterologous vaccine regimen using DNA prime and VRP boost showed a markedly stronger response than DNA vaccination alone. Conclusions: Alphavirus replicon particle vectors encoding the melanoma antigen tyrosinase (self or xenogeneic) induce immune responses and tumor protection when administered either alone or in the heterologous DNA prime/VRP boost approaches that are superior to the use of plasmid DNA alone.


PLOS ONE | 2010

Alphavirus Replicon Particles Expressing TRP-2 Provide Potent Therapeutic Effect on Melanoma through Activation of Humoral and Cellular Immunity

Francesca Avogadri; Taha Merghoub; Maureen Maughan; Daniel Hirschhorn-Cymerman; John Morris; Erika Ritter; Robert A. Olmsted; Alan N. Houghton; Jedd D. Wolchok

Background Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. Methodology/Principal Findings VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. Conclusions/Significance This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.


Clinical Cancer Research | 2007

A Novel Alphavirus Vaccine Encoding Prostate-Specific Membrane Antigen Elicits Potent Cellular and Humoral Immune Responses

Robert J. Durso; Sofija Andjelic; Jason P. Gardner; Dennis J. Margitich; Gerald P. Donovan; Robert R. Arrigale; Xinning Wang; Maureen Maughan; Todd Talarico; Robert A. Olmsted; Warren D.W. Heston; Paul J. Maddon; William C. Olson

Purpose: Prostate-specific membrane antigen (PSMA) is an attractive target for active immunotherapy. Alphavirus vaccines have shown promise in eliciting immunity to tumor antigens. This study investigated the immunogenicity of alphavirus vaccine replicon particles (VRP) that encode PSMA (PSMA-VRP). Experimental Design: Cells were infected with PSMA-VRP and evaluated for PSMA expression and folate hydrolase activity. Mice were immunized s.c. with PSMA-VRP or purified PSMA protein. Sera, splenocytes, and purified T cells were evaluated for the magnitude, durability, and epitope specificity of the anti-PSMA response. Antibodies were measured by flow cytometry, and cellular responses were measured by IFN-γ enzyme-linked immunospot and chromium release assays. Cellular responses in BALB/c and C57BL/6 mice were mapped using overlapping 15-mer PSMA peptides. A Good Laboratory Practice–compliant toxicology study was conducted in rabbits. Results: PSMA-VRP directed high-level expression of active PSMA. Robust T-cell and B-cell responses were elicited by a single injection of 2 × 105 infectious units, and responses were boosted following repeat immunizations. Anti-PSMA responses were detected following three immunizations with 102 infectious units and increased with increasing dose. PSMA-VRP was more immunogenic than adjuvanted PSMA protein. Responses to PSMA-VRP were characterized by Th-1 cytokines, potent CTL activity, and IgG2a/IgG2b antibodies. T-cell responses in BALB/c and C57BL/6 mice were directed toward different PSMA peptides. Immunogenic doses of PSMA-VRP were well tolerated in mice and rabbits. Conclusions: PSMA-VRP elicited potent cellular and humoral immunity in mice, and specific anti-PSMA responses were boosted on repeat dosing. PSMA-VRP represents a promising approach for immunotherapy of prostate cancer.


Breast Cancer Research | 2004

Alphavirus replicon particles containing the gene for HER2/ neu inhibit breast cancer growth and tumorigenesis

Xiaoyan Wang; Jian-Ping Wang; Maureen Maughan; Lawrence B Lachman

IntroductionOverexpression of the HER2/neu gene in breast cancer is associated with an increased incidence of metastatic disease and with a poor prognosis. Although passive immunotherapy with the humanized monoclonal antibody trastuzumab (Herceptin) has shown some effect, a vaccine capable of inducing T-cell and humoral immunity could be more effective.MethodsVirus-like replicon particles (VRP) of Venezuelan equine encephalitis virus containing the gene for HER2/neu (VRP-neu) were tested by an active immunotherapeutic approach in tumor prevention models and in a metastasis prevention model.ResultsVRP-neu prevented or significantly inhibited the growth of HER2/neu-expressing murine breast cancer cells injected either into mammary tissue or intravenously. Vaccination with VRP-neu completely prevented tumor formation in and death of MMTV-c-neu transgenic mice, and resulted in high levels of neu-specific CD8+ T lymphocytes and serum IgG.ConclusionOn the basis of these findings, clinical testing of this vaccine in patients with HER2/neu+ breast cancer is warranted.


Cancer immunology research | 2014

Combination of Alphavirus Replicon Particle–Based Vaccination with Immunomodulatory Antibodies: Therapeutic Activity in the B16 Melanoma Mouse Model and Immune Correlates

Francesca Avogadri; Roberta Zappasodi; Arvin Yang; Sadna Budhu; Nicole Malandro; Daniel Hirschhorn-Cymerman; Shakuntala Tiwari; Maureen Maughan; Robert A. Olmsted; Jedd D. Wolchok; Taha Merghoub

Avogadri and colleagues show that anti-CTLA-4 or anti-GITR immunomodulatory antibody improves the efficacy of a nonpathogenic viral vector–based vaccine (VRP-TRP-2) in the B16F10 melanoma mouse model. Superior antitumor protection conferred by anti-GITR was associated with enhanced humoral response and reduced CD4+PD-1+ T-cell intratumoral accumulation. Induction of potent immune responses to self-antigens remains a major challenge in tumor immunology. We have shown that a vaccine based on alphavirus replicon particles (VRP) activates strong cellular and humoral immunity to tyrosinase-related protein-2 (TRP2) melanoma antigen, providing prophylactic and therapeutic effects in stringent mouse models. Here, we report that the immunogenicity and efficacy of this vaccine is increased in combination with either antagonist anti-CTL antigen-4 (CTLA-4) or agonist anti-glucocorticoid-induced TNF family–related gene (GITR) immunomodulatory monoclonal antibodies (mAb). In the challenging therapeutic setting, VRP–TRP2 plus anti-GITR or anti–CTLA-4 mAb induced complete tumor regression in 90% and 50% of mice, respectively. These mAbs had similar adjuvant effects in priming an adaptive immune response against the vaccine-encoded antigen, augmenting, respectively, approximately 4- and 2-fold the TRP2-specific CD8+ T-cell response and circulating Abs, compared with the vaccine alone. Furthermore, while both mAbs increased the frequency of tumor-infiltrating CD8+ T cells, anti–CTLA-4 mAb also increased the quantity of intratumor CD4+Foxp3− T cells expressing the negative costimulatory molecule programmed death-1 (PD-1). Concurrent GITR expression on these cells suggests that they might be controlled by anti-GITR mAbs, thus potentially explaining their differential accumulation under the two treatment conditions. These findings indicate that combining immunomodulatory mAbs with alphavirus-based anticancer vaccines can provide therapeutic antitumor immune responses in a stringent mouse model, suggesting potential utility in clinical trials. They also indicate that tumor-infiltrating CD4+Foxp3−PD-1+ T cells may affect the outcome of immunomodulatory treatments. Cancer Immunol Res; 2(5); 448–58. ©2014 AACR.


Archive | 2001

Alphavirus vectors and virosomes with modified HIV genes for use in vaccines

Robert A. Olmsted; Paula Keith; Sergey Dryga; Ian J. Caley; Maureen Maughan; Robert E. Johnston; Nancy L. Davis; Ronald Swanstrom

Collaboration


Dive into the Maureen Maughan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Rayner

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar

Francesca Avogadri

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jedd D. Wolchok

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge