Maurice Ndagijimana
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maurice Ndagijimana.
Food Chemistry | 2014
Pui Khoon Hong; Davide Gottardi; Maurice Ndagijimana; Mirko Betti
A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis.
Frontiers in Cellular and Infection Microbiology | 2012
Pamela Vernocchi; Lucia Vannini; Davide Gottardi; Federica Del Chierico; Diana I. Serrazanetti; Maurice Ndagijimana; Maria Elisabetta Guerzoni
Bacteria colonizing the human intestinal tract exhibit a high phylogenetic diversity that reflects their immense metabolic potentials. The catalytic activity of gut microbes has an important impact on gastrointestinal (GI) functions and host health. The microbial conversion of carbohydrates and other food components leads to the formation of a large number of compounds that affect the host metabolome and have beneficial or adverse effects on human health. Metabolomics is a metabolic-biology system approach focused on the metabolic responses understanding of living systems to physio-pathological stimuli by using multivariate statistical data on human body fluids obtained by different instrumental techniques. A metabolomic approach based on an analytical platform could be able to separate, detect, characterize and quantify a wide range of metabolites and its metabolic pathways. This approach has been recently applied to study the metabolic changes triggered in the gut microbiota by specific diet components and diet variations, specific diseases, probiotic and synbiotic food intake. This review describes the metabolomic data obtained by analyzing human fluids by using different techniques and particularly Gas Chromatography Mass Spectrometry Solid-phase Micro Extraction (GC-MS/SPME), Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy and Fourier Transform Infrared (FTIR) Spectroscopy. This instrumental approach has a good potential in the identification and detection of specific food intake and diseases biomarkers.
Food Chemistry | 2013
Yuliya Hrynets; Maurice Ndagijimana; Mirko Betti
Muscle protein functionality plays an important role in routine applications in the food industry. Glycation by the Maillard reaction is a naturally occurring process, which can be used to develop new ingredients with improved functionality using a food grade approach. Actomyosin was conjugated with glucose or glucosamine in a liquid system at moderate temperatures (40°C). Sugar to protein conjugation was evident by UV-Vis spectral changes, with the glycation level determined by matrix assisted laser desorption/ionisation mass spectrometry. Parameters for glycation of muscle protein were optimised using the bidimensional hierarchical clustering analyses. The best glycation conditions were 40°C for 8 h at 1:3 protein:sugar ratio. Solubility and emulsifying properties of glycoconjugates were significantly improved as compared to non-glycated proteins. At pH 7 glycated actomyosin was on average 31% more soluble compared to non-treated protein. Glucosamine was found to be more effective for glycation and provided higher protein functionality as compared to glucose.
Poultry Science | 2014
Zied Khiari; Maurice Ndagijimana; Mirko Betti
A process based on the isoelectric solubilization/precipitation (ISP) method was developed to recover collagen from low value poultry by-products. The application of the ISP process to turkey heads generated protein isolates and an insoluble biomass that was used to extract collagen. Isolated turkey head collagen was then enzymatically hydrolyzed for different time periods using alcalase, flavorzyme, and trypsin. The enzymatic hydrolysis approaches consisted of digesting collagen with each one of the 3 enzymes alone (alcalase, flavorzyme, or trypsin), or one of the 3 combinations of 2 enzymes (alcalase/flavorzyme, alcalase/trypsin, or flavorzyme/trypsin), or a cocktail of all 3 enzymes together (alcalase/flavorzyme/trypsin). The molecular weight distribution of turkey head collagen hydrolysates was determined using size exclusion chromatography and matrix-assisted laser desorption ionization-time of flight-mass spectrometry. The enzyme cocktail produced collagen hydrolysates with the greatest amount of low molecular weight peptides ranging from 555.26 to 2,093.74 Da. These collagen peptides showed excellent solubility over a wide pH range (2 -: 8) and were able to bind cholic and deoxycholic acids and significantly (P < 0.05) inhibited plasma amine oxidase in a dose- and time-dependent manner. The ISP process combined with enzyme cocktail hydrolysis represents a potential new way to produce low molecular weight bioactive collagen peptides from low value poultry by-products.
Journal of Food Protection | 2012
Francesca Patrignani; Maurice Ndagijimana; Nicoletta Belletti; Fausto Gardini; Pamela Vernocchi; Rosalba Lanciotti
This research was conducted to determine the biogenic amine (BA) and ethyl carbamate (EC) concentrations in commercial Primitivo wine samples and the influence of the use of malolactic starter culture on concentrations of these potentially hazardous compounds in this wine. One hundred sixty bottles of wine from eight producers in the Apulia region of southern Italy were purchased at retail and analyzed. The most common BAs were histamine, 2-phenylethylamine, tyramine, cadaverine, putrescine, spermine, and spermidine. Putrescine (derived from ornithine) was the most abundant BA in all commercial Primitivo wines (5.41 to 9.51 mg/liter), 2-phenylethylamine was detected in only two commercial wines (at less than 2.12 mg/liter), and histamine was found at concentrations of 1.49 to 16.34 mg/liter. The concentration of EC in commercial Primitivo wine was 6.81 to 15.62 ppb, which is not considered dangerous for human health. Malolactic fermentation (MLF) affected the concentrations of BAs and EC differently. For EC, no significant differences were detected between samples of wine produced by spontaneous fermentation and wine that was inoculated malolactic starter. Mean EC concentrations were 12 and 14 ppb in two batches tested (always 18 ppb or less), regardless of whether the malolactic starter was added. Although present at trace levels in wine before the MLF, histamine accumulated during the MLF process, regardless of whether the malolactic starter was added. However, the increase in histamine was higher in wines without the malolactic starter. The concentrations of putrescine and cadaverine increased after MLF, especially in the wine that spontaneously fermented. The use of a selected malolactic starter resulted in reductions in BA concentrations in wine produced by this guided MLF compared with wine produced by spontaneous MLF.
Food Chemistry | 2016
Pui Khoon Hong; Maurice Ndagijimana; Mirko Betti
Salt reduction in food is a challenging task. The food processing sector has adopted taste enhancers to replace salt partially. In this study, a flavour enhancer formulation (liquid seasoning) was produced using enzymatically hydrolysed poultry proteins isolate (PPI). The PPI obtained through the isoelectric solubilisation precipitation process (ISP) was hydrolysed with Alcalase and glycated with glucosamine (GlcN) at moderate temperatures (37/50°C) in the presence or absence of transglutaminase (TGase). The glycated hydrolysates showed reduced fluorescence advanced glycated end-products (AGE) and a reduced amount of alpha-dicarbonyl compounds (α-DC). An untrained consumer panel ranked the meat protein hydrolysate seasoning saltier than the salty standard seasoning solution (p<0.05) regardless of GlcN glycation (both tested at 0.3M Na(+)). GlcN treatments showed a tendency (p=0.0593) to increase savouriness. Free glutamic acid and free aspartic acid found in the PPI hydrolysate likely increased the salty perception.
World Journal of Microbiology & Biotechnology | 2011
Pamela Vernocchi; Maurice Ndagijimana; Diana I. Serrazanetti; Clemencia Chaves López; Alessandra Fabiani; Fausto Gardini; M. Elisabetta Guerzoni; Rosalba Lanciotti
The aim of this work was to evaluate the suitability of four strains of Saccharomyces cerevisiae endowed with in vitro β-glucosidase activity to improve the Sangiovese wine aroma profiles. In particular the effects of the strains on fermentation kinetics, wine sugar and acid concentrations, volatile molecule profiles and colour parameters were evaluated. Moreover their effects on anthocyanins, anthocyanidins and poliphenols were evaluated. These four strains of S. cerevisiae were tested in comparison with one commercial strain and with a spontaneous fermentation in the presence and in the absence of paraffin oil. The results showed that the four wild strains had high fermentation rates and an efficient conversion of grape sugars to alcohol. However, each strain imparted specific features to the wine. AS11 and AS15 gave rise to wine having low volatile acidity values associated to high levels of linalool and nerolidol. They provoked decrease of anthocyanins accompanied by the increase of some anthocyanidins. S. cerevisiae BV12 and BV14 showed the best performances producing wines with the lowest residual sugar contents and volatile acidity values, high levels of nerolidol and citronellol without detrimental effects on wine colour.
PLOS ONE | 2015
Yuliya Hrynets; Maurice Ndagijimana; Mirko Betti
The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure.
American Journal of Enology and Viticulture | 2013
Francesca Patrignani; Maurice Ndagijimana; Pamela Vernocchi; Andrea Gianotti; Claudio Riponi; Fausto Gardini; Rosalba Lanciotti
High-pressure homogenization (HPH) was applied at 90 MPa to different yeasts prior to use or prior to their use in the preparation of tirage solutions for sparkling wines. The effects on yeast cell viability, fermentation, and death kinetics during secondary fermentation and aging were determined. Saccharomyces bayanus L951 and Saccharomyces cerevisiae ML692 and commercial strains S. bayanus Lalvin CH14, S. bayanus IOC 18-2007, S. bayanus Lalvin EC1118, and S. bayanus IT 1818 were used as starters. Chemical characteristics and volatile compound profiles of the final sparkling wines produced with either HPH-treated or HPH-nontreated yeast were assessed. Results showed that sensitivity to HPH treatment was strain dependent, and after 40 days of secondary fermentation all samples reached pressure levels of at least 0.60795 MPa, independent of the HPH treatment, with the exception of those inoculated with strain ML692. Scanning electron microscope microphotographs of the samples aged for 40 days indicated for all strains an acceleration of autolysis due to HPH treatment. SPME-GC-MS and electronic nose data indicated significant changes due to HPH treatment. According to partial least squares analysis, the sparkling wines produced using HPH-treated cells, except strain L951, were significantly different from the control wines. High-pressure homogenization seems to be a versatile approach for modulation of the autolytic phenomena of starter tirage cultures of sparkling wines.
Frontiers in Microbiology | 2016
Francesca Patrignani; Fabio Chinnici; Diana I. Serrazanetti; Pamela Vernocchi; Maurice Ndagijimana; Claudio Riponi; Rosalba Lanciotti
In wines, the presence of sulfur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of S. cerevisiae. In addition, the production of sulfur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the 10 strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulfur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.