Maurice R. Marshall
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maurice R. Marshall.
Journal of Food Science | 2011
Milena M. Ramírez-Rodrigues; Maria L. Plaza; Alberto Azeredo; Murat O. Balaban; Maurice R. Marshall
UNLABELLED Hibiscus cold (25 °C) and hot (90 °C) water extracts were prepared in various time-temperature combinations to determine equivalent extraction conditions regarding their physicochemical and phytochemical properties. Equivalent anthocyanins concentration was obtained at 25 °C for 240 min and 90 °C for 16 min. Total phenolics were better extracted with hot water that also resulted in a higher antioxidant capacity in these extracts. Similar polyphenolic profiles were observed between fresh and dried hibiscus extracts. Hibiscus acid and 2 derivatives were found in all extracts. Hydroxybenzoic acids, caffeoylquinic acids, flavonols, and anthocyanins constituted the polyphenolic compounds identified in hibiscus extracts. Two major anthocyanins were found in both cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside. In general, both cold and hot extractions yielded similar phytochemical properties; however, under cold extraction, color degradation was significantly lower and extraction times were 15-fold longer. PRACTICAL APPLICATION Hibiscus beverages are prepared from fresh or dried calyces by a hot extraction and pasteurized, which can change organoleptic, nutritional, and color attributes. Nonthermal technologies such as dense phase carbon dioxide may maintain their fresh-like color, flavor, and nutrients. This research compares the physicochemical and phytochemical changes resulting from a cold and hot extraction of fresh and dried hibiscus calyces and adds to the knowledge of work done on color, quality attributes, and antioxidant capacity of unique tropical products. In addition, the research shows how these changes could lead to alternative nonthermal processes for hibiscus.
Journal of Food Protection | 1989
C.-M. Chen; C.I. Wei; J. A. Koburger; Maurice R. Marshall
In a comparative study to determine their effectiveness for early detection of prolific histamine-producing bacteria from tuna samples, Nivens medium proved to be superior to three modifications of the medium. Presumptive colonies could be detected in 24 h on Nivens agar surface-plated and incubated at 35°C. Following confirmatory histamine determination with high performance liquid chromatography of the tuna fish infusion broth inoculated with presumptive histamine-producers and non-producers, detection rates of 95.8 and 93.9% were obtained from temperature-abused and bacteria-spiked tuna samples, respectively, using Nivens agar. The other three modifications provided much lower detection rates and higher false-positive and false-negative results than did Nivens agar.
Journal of the Science of Food and Agriculture | 2011
Arvind Kannan; Navam Hettiarachchy; Maurice R. Marshall; Sivakumar Raghavan; Hordur G Kristinsson
BACKGROUND Shrimp wastes contain high-quality protein that is underutilized, and particularly peptides derived from shrimp wastes (normally used as animal feed) have not been utilized for bioactive properties. Hence the objective was to utilize shrimp waste proteins in generating peptides and to investigate these for cancer antiproliferative activities. The objectives involved hydrolyzing shrimp proteins (intact in shell) using a food-grade Cryotin enzyme, obtaining gastrointestinal resistant peptides, fractionation to generate < 10, 10-30 and > 30 kDa fractions, and evaluating for colon and liver cancer cell growth inhibitory effects. Three shrimp shells--whole langostino lobster shells from El Salvador (South America), shrimp shells from St Petersburg, FL (USA), and shrimp shell whites from the Gulf of Mexico, LA (USA)--were evaluated for the study. RESULTS Peptide fractions (<10 and 10-30 kDa) obtained from shrimp shell whites (Gulf of Mexico) as well as from langostino shells (El Salvador) significantly inhibited the growth of both colon and liver cancer cells by 60%, while < 10 kDa fraction from shrimp shells (FL) inhibited growth of liver cancer cells alone by 55%, compared to controls. CONCLUSION The promising anticancer peptide fractions from shrimp waste proteins has the potential for novel nutraceutical ingredient applications.
Food Chemistry | 2014
Changmou Xu; Yavuz Yagiz; Wlodzimierz Borejsza-Wysocki; Jiang Lu; Liwei Gu; Milena M. Ramírez-Rodrigues; Maurice R. Marshall
Enzyme degradation of plant cell wall polysaccharides can potentially enhance the release of bioactive phenolics. The aim of this study was to evaluate various combinations of solvent and enzyme, enzyme type (cellulase, pectinase, ß-glucosidase), and hydrolysis time (1, 4, 8, 24 h) on the release of muscadine grape skin and seed phenolics, and their antioxidant activities. Results showed that pre-treated muscadine skins and seeds with enzymes decreased total phenolic yield compared with solvent (50% ethanol) alone. Enzyme release of phenolics from skins of different muscadine varieties was significantly different while release from seeds was similar. Enzyme hydrolysis was found to shorten extraction time. Most importantly, enzyme hydrolysis modified the galloylated form of polyphenols to low molecular weight phenolics, releasing phenolic acids (especially gallic acid), and enhancing antioxidant activity.
International Journal of Obesity | 2015
Lu Zhao; Inhae Kang; X Fang; W Wang; Meeae Lee; R R Hollins; Maurice R. Marshall; S Chung
Background and Objective:We have previously demonstrated that gamma tocotrienol (γT3) potently inhibits adipocyte hyperplasia in human adipose-derived stem cells (hASCs). In this study, our objective was to investigate the γT3 effects on early-onset obesity, inflammation and insulin resistance in vivo.Methods:Young C57BL/6J mice were fed a high-fat (HF) diet supplemented with 0.05% γT3 for 4 weeks. The concentrations of γT3 in plasma and adipose tissue were measured using high-performance liquid chromatography. Effects of γT3 on body weight gain, adipose volume, plasma levels of fasting glucose, insulin (enzyme-linked immunosorbent assay (ELISA)), proinflammatory cytokines (mouse cytokine array), insulin signaling (western blotting) and gene expression (quantitative real-time PCR, qPCR) in the liver and adipose tissue were examined. Influences of γT3 on [3H]-2-deoxyglucose uptake and lipopolysaccharide (LPS)-mediated NFκB signaling (western blotting) were assessed in hASCs. Effects of γT3 on macrophage M1/M2 activation were investigated using qPCR in mouse bone marrow-derived macrophages.Results:After a 4-week treatment, γT3 accumulated in adipose tissue and reduced HF diet-induced weight gain in epididymal fat, mesenteric fat and the liver. Compared with HF diet-fed mice, HF+γT3-fed mice were associated with (1) decreased plasma levels of fasting glucose, insulin and proinflammatory cytokines, (2) improved glucose tolerance and (3) enhanced insulin signaling in adipose tissue. There were substantial decreases in macrophage specific markers, and monocyte chemoattractant protein-1, indicating that γT3 reduced the recruitment of adipose tissue macrophages (ATMs). In addition, γT3 treatment in human adipocytes resulted in (1) activation of insulin-stimulated glucose uptake and (2) a significant suppression of MAP kinase and NFκB activation. In parallel, γT3 treatment led to a reduction of LPS-mediated M1 macrophage polarization.Conclusion:Our results demonstrated that γT3 ameliorates HF diet-mediated obesity and insulin resistance by inhibiting systemic and adipose inflammation, as well as ATM recruitment.
Journal of Food Protection | 2001
Wen-Xian Du; Jeongmok Kim; John A. Cornell; Tung-Shi Huang; Maurice R. Marshall; Cheng-I Wei
Microbiological assessment, sensory evaluation, and electronic nose (AromaScan) analysis were performed on yellowfin tuna stored at 0, 4, 10, and 22 degrees C for 0, 1, 3, 5, and 9 days. Fish color, texture, appearance, and odor were evaluated by a trained sensory panel, while aroma-odor properties were evaluated using an AromaScan. Bacterial enumeration was performed using plate count agar containing 1.5% NaCl. Tuna fillets stored at 22 degrees C for 3 days or longer had a bacterial load of over 10(7) CFU/g and were rated not acceptable for consumption (grade C) by the sensory panel. Tuna fillets stored at 4 degrees C for 9 days or 10 degrees C for over 5 days were rated as grade C products and also had a bacterial load of over 10(7) CFU/g. The change in fish quality as determined by AromaScan followed increases in microbiological counts in tuna fillets, indicating that bacterial load can serve as a useful and objective indicator of gross spoilage. Electronic nose devices can be used in conjunction with microbial counts and sensory panels to evaluate the degree of decomposition in tuna during storage.
Food Chemistry | 2012
Milena M. Ramírez-Rodrigues; Maria L. Plaza; Alberto Azeredo; Murat O. Balaban; Maurice R. Marshall
The effect of dense phase carbon dioxide (DPCD) processing (34.5 MPa, 8% CO₂, 6.5 min, and 40 °C) on phytochemical, sensory and aroma compounds of hibiscus beverage was compared to a conventional thermal process (HTST) (75 °C for 15 s) and a control (untreated beverage) during refrigerated storage (4 °C). The overall likeability of the hibiscus beverage for all treatments was not affected by storage up to week 5. DPCD process retained more aroma volatiles as compared to HTST. Aroma profiles in the beverages were mainly composed of alcohols and aldehydes with 1-octen-3-ol, decanal, octanal, 1-hexanol, and nonanal as the compounds with the highest relative percentage peak areas. A loss of only 9% anthocyanins was observed for the DPCD processed hibiscus beverage. Phytochemical profiles in the hibiscus beverage included caffeoylquinic acids, anthocyanins, and flavonols. No major changes in total phenolics and antioxidant capacity occurred during the 14 weeks of storage.
Journal of Food Science | 2010
Wei-Yea Hsu; Amarat Simonne; Pongphen Jitareerat; Maurice R. Marshall
UNLABELLED The effects of low-dose irradiation (0.25 to 2 kGy) and postirradiation storage (at 4 degrees C) on microbial and visual quality, color values (L*, a*, b*, chroma, and hue [ degrees ]), and chlorophyll content (Chl a, Chl b, and total Chl) of fresh mint were evaluated. Samples inoculated with E. coli O157:H7, Salmonella, and MS2 bacteriophage were irradiated and evaluated. E. coli O157:H7 and Salmonella populations were reduced by 2 to 2.4, 3.5, and 5.8 log CFU/g, respectively, 1 d after treatment with 0.25, 0.60, and 1 kGy, respectively, and were completely eliminated at 2 kGy. None of the irradiation doses (P < 0.0001) reduced MS2 bacteriophage populations by more than 0.60 log PFU/g. Irradiation doses did not affect visual quality and samples remained of excellent to good quality (score 7.75 to 9) for up to 9 d of storage. Irradiation at 0.60, 1, and 2 kGy increased (P < 0.0001) Chl a, Chl b, and total Chl. Both total Chl and Chl a decreased significantly after 3 d of storage. Significant decreases in Chl b were not observed until day 12 of storage. Color values (L*, b*, and chroma) were not significantly different until day 6 of storage and hue ( degrees ) remained unchanged (179 degrees ) for the entire storage period of 12 d. Overall, irradiation did not change L*, a*, b*, or chroma. These results demonstrate that irradiation of fresh mint at 2 kGy has the potential to improve its microbial quality and extend its shelf life without compromising its visual quality and color. PRACTICAL APPLICATION Mints and other raw fresh herbs are widely used for flavoring as well as garnish in a variety of dishes without further cooking. However, mint is one considered as one of the high-risk herbs when it comes to microbial contamination. We have evaluated the use of gamma irradiation treatment at very low doses ranging from 0 to 2 kGy to eliminate seeded Salmonella spp, E. coli O157:H7, and MS2 bacteriophage, a surrogate of hepatitis A virus. We found that low-dose irradiation (1.0 to 2.0 kGy) appears to be a promising method for improving the microbiological quality of fresh mint without compromising its visual and color attributes. This method may be applied to many popular fresh culinary herbs that are commonly used as garnishes in Asian cuisine.
Comparative Biochemistry and Physiology B | 1989
Obdulio J. Ferrer; J. A. Koburger; Benjamin K. Simpson; Rick A. Gleeson; Maurice R. Marshall
Abstract 1. 1. Phenoxidase (PO) from the cuticle of Florida spiny lobster was found as inert (IPO) and/or endogenously active (EAPO) forms depending on the molt stage. 2. 2. PO specific activity after treating with trypsin increased through the months of May to September. However, EAPO activities remained fairly constant during this same period. 3. 3. Nondenaturing polyacrylamide gel electrophoresis showed the existence of various PO forms depending on the molting stage.
Journal of Food Science | 2011
Milena M. Ramírez-Rodrigues; Murat O. Balaban; Maurice R. Marshall; Russell L. Rouseff
UNLABELLED Calyxes from the Roselle plant (Hibiscus sabdariffa L.) were used to prepare cold (22 °C for 4 h) and hot (98 °C for 16 min) infusions/teas from both fresh and dried forms. Aroma volatiles were extracted using static headspace SPME and analyzed using GC-MS and GC-O with 2 different columns (DB-5 and DB-Wax). Totals of 28, 25, 17, and 16 volatiles were identified using GC-MS in the dried hot extract (DHE), dried cold extract (DCE), fresh hot extract (FHE), and fresh cold extract (FCE) samples, respectively. In terms of total GC-MS peak areas DHE ≫ DCE > FHE ≫ FCE. Nonanal, decanal, octanal, and 1-octen-3-ol were among the major volatiles in all 4 beverage types. Thirteen volatiles were common to all 4 teas. Furfural and 5-methyl furfural were detected only in dried hibiscus beverages whereas linalool and 2-ethyl-1-hexanol were detected only in beverages from fresh hibiscus. In terms of aroma active volatiles, 17, 16, 13, and 10 aroma active volatiles were detected for DHE, DCE, FHE, and FCE samples, respectively. The most intense aroma volatiles were 1-octen-3-one and nonanal with a group of 4 aldehydes and 3 ketones common to all samples. Dried samples contained dramatically higher levels of lipid oxidation products such as hexanal, nonanal, and decanal. In fresh hibiscus extracts, linalool (floral, citrus) and octanal (lemon, citrus) were among the highest intensity aroma compounds but linalool was not detected in any of the dried hibiscus extracts. PRACTICAL APPLICATION Hibiscus teas/infusions are one of the highest volume specialty botanical products in international commerce. The beverage is consumed for both sensory pleasure and health attributes and is prepared a number of ways throughout the world. Although color and taste attributes have been examined, little information is known about its aroma volatiles and no other study has compared extractions from both fresh and dried as well as extraction temperature differences. This is also, apparently, the first study to identify the aroma active volatiles in hibiscus beverages using GC-olfactometry. Manufacturers and consumers will now have a better understanding of why hibiscus teas prepared in different ways from either fresh or dried forms have a different flavor quality and intensity.