Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauricio Parra is active.

Publication


Featured researches published by Mauricio Parra.


Geological Society of America Bulletin | 2008

Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia

Andrés Mora; Mauricio Parra; Manfred R. Strecker; Edward R. Sobel; H. Hooghiemstra; Vladimir Torres; Jaime Vallejo Jaramillo

New apatite fission-track data, paleoelevation estimates from paleobotany, and recently acquired geological data from the Eastern Cordillera of Colombia document the onset of increased exhumation rates in the northeastern Andes at ca. 3 Ma. The Eastern Cordillera forms an efficient orographic barrier that intercepts moisture-laden winds sourced in the Amazon lowlands, leading to high rainfall and erosion gradients across the eastern flank of the range. In contrast, the drier leeward western flank is characterized by lower rates of deformation and exhumation. In light of the geological evolution of the Eastern Cordillera, the combination of these data sets suggests that the orographic barrier reached a critical elevation between ca. 6 and ca. 3 Ma, which ultimately led to protracted, yet more focused erosion along the eastern flank. Sequentially restored structural cross sections across the eastern flank of the Eastern Cordillera indicate that shortening rates also have increased during the past 3 Ma. From fission-track and structural cross-section balancing, we infer that accelerated exhumation led to increasing tectonic rates on the eastern flank, creating a pronounced topographic and structural asymmetry in the Eastern Cordillera. The tectonic and climatic evolution of this orogen thus makes it a prime example of the importance of climatic forcing on tectonic processes.


Geological Society of America Bulletin | 2010

Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia

Brian K. Horton; Joel E. Saylor; Junsheng Nie; Andrés Mora; Mauricio Parra; Andrés Reyes-Harker; Daniel F. Stockli

Laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) analyses of 29 samples from the Eastern Cordillera of Colombia reveal the origin of northern Andean basement and patterns of sedimentation during Paleozoic subsidence, Jurassic–Early Cretaceous extension, Late Cretaceous postrift subsidence, and Cenozoic shortening and foreland-basin evolution. U-Pb geochronological results indicate that presumed Precambrian basement is mainly a product of early Paleozoic magmatism (520–420 Ma) potentially linked to subduction and possible collision. Inherited zircons provide evidence for Mesoproterozoic tectonomagmatic events at 1200–1000 Ma during Grenville-age orogenesis. Detrital zircon U-Pb ages for Paleozoic strata show derivation from Andean basement, syn depositional magmatic sources (420–380 Ma), and distal sources of chiefl y Mesoproterozoic basement (1650–900 Ma) in the Amazonian craton (Guyana shield) to the east or in possible continental terranes along the western margin of South America. Sedimentation during Jurassic–Early Cretaceous rifting is expressed in detrital zircon age spectra as Andean basement sources, recycled Paleozoic contributions, and igneous sources of Carboniferous–Permian (310–250 Ma) and Late Triassic–Early Jurassic (220–180 Ma) origin. Detrital zircon provenance during continued Cretaceous extension and postrift thermal subsidence recorded the elimination of Andean basement sources and increased infl uence of craton-derived drainage systems providing mainly Paleoproterozoic and Mesoproterozoic (2050–950 Ma) grains. By Eocene time, zircons from the Guyana shield (1850–1350 Ma) dominated the detrital signal in the easternmost Eastern Cordillera. In contrast, coeval Eocene deposits in the axial Eastern Cordillera contain Late Cretaceous–Paleocene (90–55 Ma), Jurassic (190–150 Ma), and limited Permian–Triassic (280–220 Ma) zircons recording initial uplift and exhumation of principally Mesozoic magmatic-arc rocks to the west in the Central Cordillera. Oligocene–Miocene sandstones of the proximal Llanos foreland basin document uplift-induced exhumation of the Eastern Cordillera fold-thrust belt and recycling of the Paleogene cover succession rich in both arc-derived detritus (dominantly 180– 40 Ma) and shield-derived sediments (mostly 1850–950 Ma). Late Miocene–Pliocene erosion into the underlying Cretaceous section is evidenced by elimination of Mesozoic– Cenozoic zircons and increased proportions of 1650–900 Ma zircons emblematic of Cretaceous strata.


Gsa Today | 2010

Resolving uplift of the Northern Andes using detrital zircon age signatures

Brian K. Horton; Mauricio Parra; Joel E. Saylor; Junsheng Nie; Andrés Mora; Vladimir Torres; Daniel F. Stockli; Manfred R. Strecker

Uplift of the Eastern Cordillera in the northern Andes has been linked to orographic climate change and genesis of South America’s largest river systems. The timing of initial uplift remains poorly constrained, with most estimates ranging from ca. 60 to ca. 5 Ma. New detrital zircon U-Pb ages from proximal fill of the Llanos foreland basin in Colombia reveal a pronounced mid-Cenozoic shift in provenance from an Amazonian craton source to an Andean fold-thrust belt source. This shift corresponds with changes in detrital zircon (U-Th)/He ages, a conglomeratic unroofing sequence, and a sharp increase in foredeep accumulation rates. These nearly simultaneous changes in zircon age spectra, clast compositions, and sediment accumulation are attributable to latest Oligocene uplift of the eastern flank of the Eastern Cordillera. The timing relationships suggest an early activation of the frontal thrust system, implying a long-term (up to 25 m.y.) cessation of orogenic wedge advance, potentially driven by structural inheritance and/or climate change. INTRODUCTION Surface uplift of the Eastern Cordillera in the northern Andes has had a profound effect on orographic climate change (Mora et al., 2008), growth of large continental drainage systems (Fig. 1) (Amazon, Orinoco, and Magdalena rivers; Hoorn et al., 1995; Díaz de Gamero, 1996), and biologic evolution of neotropical rainforests (Hooghiemstra and Van der Hammen, 1998; Jaramillo et al., 2006). Most estimates for the onset of uplift along the eastern flank of the Colombian Andes (Fig. 2) range from Paleocene to Pliocene time (Van der Hammen et al., 1973; Dengo and Covey, 1993; Cooper et al., 1995; Bayona et al., 2008; Parra et al., 2009a). Initial uplift has proven difficult to constrain by conventional methods. First, recent zircon fission track data provide a minimum age but do not uniquely pinpoint the precise onset of earliest uplift-induced exhumation (Parra et al., 2009b). Second, insights from synorogenic growth strata are commonly limited by inadequate exposure, poor seismic resolution, and GSA Today, v. 20, no. 7, doi: 10.1130/GSATG76A.1 minimal variation in stratal dip (e.g., Toro et al., 2004). Third, clastic compositional records of erosional unroofing are hindered by the uniformly high-maturity (quartz-dominated) sand compositions imposed by intense tropical weathering (e.g., Johnsson et al., 1988). In this study, we utilize U-Pb and (U-Th)/He ages of detrital zircon grains from the Colombian Andes to demonstrate that initial uplift-induced exhumation along the eastern flank of the fold-thrust belt had commenced by ca. 26–23 Ma. Timing relationships revealed by geochronological data coincide with shifts in conglomerate clast compositions and sediment accumulation rates and provide new insights into the pace of orogenic wedge advance. GEOLOGIC SETTING The Eastern Cordillera of Colombia forms a 1–4-km-high orographic barrier separating the intermontane Magdalena Valley from the Llanos foreland basin (Fig. 2). The 100–200-kmwide range is bounded by a frontal thrust system consisting of inverted normal faults and newly formed fold-thrust structures (Cooper et al., 1995; Mora et al., 2006). Following Jurassic– Early Cretaceous rifting, Andean orogenesis began with latest Cretaceous–Paleocene shortening in the Central Cordillera and early foreland basin evolution in the present-day Magdalena Figure 1. Map of South America showing main river systems (Magdalena, Orinoco, Amazon, and Parana) and Precambrian crustal provinces of the Amazonian craton (after Cordani et al., 2000; Chew et al., 2007).


AAPG Bulletin | 2010

Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems

Andrés Mora; Brian K. Horton; Andrés Mesa; Jorge Rubiano; Richard A. Ketcham; Mauricio Parra; Vladimir Blanco; Diego Garcia; Daniel F. Stockli

Previously unreleased fission-track results and regional structural relationships are used to interpret the migration of deformation during Cenozoic orogenesis in the Eastern Cordillera (Cordillera Oriental) of the Colombian Andes. Low-temperature thermochronological results are based on apatite and zircon fission-track analyses of 41 samples collected along vertical and horizontal transects across the Eastern Cordillera at 4–7N latitude. Inverse modeling of fission-track results helps delimit the most probable cooling histories caused by exhumation linked to upper-crustal deformation. These inverse models are constrained by known structural geometries, chronostratigraphy, biostratigraphy, and vitrinite reflectance data. Fission-track data and modeling results indicate a close correspondence in the timing and style of deformation along the western and eastern flanks of the Eastern Cordillera. East-directed fold-thrust deformation along the eastern boundary with the Llanos foreland basin was underway by the late Oligocene and early Miocene. Similarly, west-directed fold-thrust structures along the western boundary with the intermontane middle Magdalena Valley Basin became active at approximately the same time. Less well known is the time of initial shortening within the axial segment of the Eastern Cordillera; although fission-track results suggest active exhumation by the early Miocene, shortening may have commenced much earlier during the late Eocene. Timing relationships for the Eastern Cordillera have important implications for the generation, migration, and accumulation of petroleum in the middle Magdalena Valley intermontane basin and the Llanos foreland basin. Our study provides a regional context to assess the timing of structural trap development and improve exploration and development of new and existing reservoirs in Colombia and analogous fold-thrust systems elsewhere.


Geological Society of America Bulletin | 2009

Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia

Mauricio Parra; Andrés Mora; Carlos Jaramillo; Manfred R. Strecker; Edward R. Sobel; Luis Quiroz; Milton Rueda; Vladimir Torres

Foreland basin development in the Andes of central Colombia has been suggested to have started in the Late Cretaceous through tectonic loading of the Central Cordillera. Eastward migration of the Cenozoic orogenic front has also been inferred from the foreland basin record west of the Eastern Cordillera. However, farther east, limited data provided by foreland basin strata and the adjacent Eastern Cordillera complicate any correlation among mountain building, exhumation, and foreland basin sedimentation. In this study, we present new data from the Medina Basin in the eastern foothills of the Eastern Cordillera of Colombia. We report sedimentological data and palynological ages that link an eastward-thinning early Oligocene to early Miocene syntectonic wedge containing rapid facies changes with an episode of fast tectonic subsidence starting at ca. 31 Ma. This record may represent the first evidence of topographic loading generated by slip along the principal basement-bounding thrusts in the Eastern Cordillera to the southwest of the basin. Zircon fission-track ages and paleocurrent analysis reveal the location of these thrust loads and illustrate a time lag between the sedimentary signal of topographic loading and the timing of exhumation (ca. 18 Ma). This lag may reflect the period between the onset of range uplift and significant removal of overburden. Vitrinite reflectance data document northward along-strike propagation of the deformation front and folding of the Oligocene syntectonic wedge. This deformation was coupled with a nonuniform incorporation of the basin into the wedge-top depozone. Thus, our data set constitutes unique evidence for the early growth and propagation of the deformation front in the Eastern Cordillera, which may also improve our understanding of spatiotemporal patterns of foreland evolution in other mountain belts.


Geology | 2012

Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes

Mauricio Parra; Andrés Mora; Cristina Lopez; Luis Ernesto Rojas; Brian K. Horton

Low-temperature thermochronometry and crosscutting relationships identified in newly released reflection seismic data reveal a previously unrecognized zone of early Andean shortening in Colombia. Apatite fission-track data and thermal modeling help define a 60–50 Ma onset of rapid exhumation along the present boundary between the Magdalena Valley hinterland basin and Eastern Cordillera thrust belt. Subsurface angular unconformities localized above fold-thrust structures indicate Paleogene deposition in a wedge-top depozone containing doubly vergent reverse faults. Retrodeformation of a cross section based on interpreted seismic profiles and thermochronometric data indicates Paleocene to Early Eocene shortening and exhumation occurred through simultaneous activation of east- and west-directed reverse faults across a broad orogenic front. Subsequent deformation focused along west-directed inversion structures. These relationships reveal that deformation operated in a disparate manner, rather than following a systematic progression from hinterland to foreland. The northern Andes also exemplify the potential effects of hinterland sediment loading and fault strength on deformation advance in contractional orogens.


Geological Society of America Bulletin | 2010

The eastern foothills of the Eastern Cordillera of Colombia: An example of multiple factors controlling structural styles and active tectonics

Andrés Mora; Mauricio Parra; Manfred R. Strecker; Edward R. Sobel; Gerold Zeilinger; Carlos Jaramillo; Silane Da Silva; Mauricio Blanco

We decipher the geometry, timing, and kinematics of deformation of a region in the eastern foothills of the Eastern Cordillera of Colombia. We assess the influence of inherited structural fabrics, changes in basin geometry, erosional denudation, and the characteristics of the tectonic stress field with respect to the evolution of the structural styles of the deformation front in the Eastern Cordillera. Detailed structural and geomorphic mapping of an area of ∼5000 km 2 , analysis of seismic-reflection profiles, cross-section balancing, tectonic stress-field indicators, and new apatite fission-track data are used to characterize the partitioning of Late Cenozoic deformation in the eastern foothills of the Eastern Cordillera of Colombia. During the late Miocene–Pliocene, in the Eastern Cordillera, deformation migrated from inverted master normal faults to low-elevation, low-amplitude structures in the foreland. However, this shift in the locus of deformation was not spatially uniform. The deformation front is wider in a northern sector of the Cordilleran foothills, where sedimentary units are thicker, and shortening is perpendicular to the structures. This shortening direction is identical to the direction of the greatest horizontal stress S Hmax as seen in borehole breakouts. During the late Miocene–Pliocene, basement ranges are passively uplifted by younger, more frontal thrusts. The eastern foothills of the Eastern Cordillera thus reveal a complex combination of factors responsible for the structural styles and partitioning of active deformation in an inversion orogen. Over time, the most important factor changes, from the role of inherited structural fabrics to the geometries of basin fills.


Geological Society of America Bulletin | 2012

Clastic deposition, provenance, and sequence of Andean thrusting in the frontal Eastern Cordillera and Llanos foreland basin of Colombia

Alejandro Bande; Brian K. Horton; Juan C. Ramírez; Andrés Mora; Mauricio Parra; Daniel F. Stockli

Sedimentological, provenance, and detrital thermochronological results for basin fill at the modern deformation front of the northern Andes (6°N latitude) provide a long-term, Eocene to Pliocene record of foreland-basin sedimentation along the Eastern Cordillera–Llanos basin boundary in Colombia. Lithofacies assemblages and paleocurrent orientations in the upward-coarsening, ~5-km-thick succession of the Nunchia syncline reveal a systematic shift from craton-derived, shallow-marine distal foreland (back-bulge) accumulation in the Mirador Formation, to orogen-sourced, deltaic, and coastal-influenced sedimentation of the distal to medial foreland (foredeep) in the Carbonera and Leon Formations, to anastomosing fluvial and distributive braided fluvial megafan systems of the proximal foreland (foredeep to wedge-top) basin in the lower and upper Guayabo Formation. These changes in depositional processes and sediment dispersal are supported by up-section variations in detrital zircon U-Pb and (U-Th)/He ages that record exhumation of evolving, compartmentalized sediment source areas in the Eastern Cordillera. The data are interpreted in terms of a progressive eastward advance in fold-and-thrust deformation, with late Eocene–Oligocene deformation in the axial zone of the Eastern Cordillera along the western edge of Floresta basin (Soapaga thrust), early Miocene reactivation (inversion) of the eastern margin of the Mesozoic rift system (Pajarito and Guaicaramo thrusts), and middle–late Miocene propagation of a footwall shortcut fault (Yopal thrust) that created the Nunchia syncline in a wedge-top (piggyback) setting of the eastern foothills along the transition from the Eastern Cordillera to Llanos foreland basin. Collectively, the data presented here for the frontal Eastern Cordillera define a general in-sequence pattern of eastward-advancing fold-and-thrust deformation during Cenozoic east-west shortening in the Colombian Andes.


Geological Society, London, Special Publications | 2013

Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia

Andrés Mora; Andrés Reyes-Harker; Guillermo Rodriguez; Eliseo Tesón; Juan Carlos Ramírez-Arias; Mauricio Parra; Victor Caballero; José Pedro Mora; Isaid Quintero; Victor A. Valencia; M. Ibanez; Brian K. Horton; Daniel F. Stockli

Abstract The Northern Andes of Colombia is a key locality for understanding tectonic inversion of symmetric rifts. A review of available data on structural geometry and deformation timing, and new thermochronology and provenance data from selected localities, enable the construction of balanced cross-sections and shortening budgets. During early deformation in the Palaeocene, most shortening was focused in the western sector of the orogen, in the Central Cordillera and the Magdallena Valley, although widely spaced and mild inversion occur in areas as far to the east as the Llanos Basin. After a period of tectonic quiescence in the Middle Eocene, deformation resumed across a former early Mesozoic graben in the Eastern Cordillera. Peak shortening rates and out-of-sequence reactivation of the main inversion faults were in place in latest Miocene time, during a phase of topographical growth. Our results indicate that coeval activation of basement highs and adjacent slower-slip shortcuts appear to be characteristic of inverted symmetric grabens. However, before reactivation and brittle faulting occur, strain hardening is required. Deformation rates in the Eastern Cordillera correlate with the westwards velocity of the South American Plate. A threshold convergence rate of approximately 2 cm year−1 seems to be necessary to activate shortening in the upper plate.


AAPG Bulletin | 2015

Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia

Andrés Reyes-Harker; Carlos Fernando Ruiz-Valdivieso; Andrés Mora; Juan Carlos Ramírez-Arias; Guillermo Rodriguez; Felipe de la Parra; Victor Caballero; Mauricio Parra; Nestor Moreno; Brian K. Horton; Joel E. Saylor; Alejandro Silva; Victor A. Valencia; Daniel F. Stockli; Vladimir Blanco

New biostratigraphic zonations, core descriptions, sandstone petrography, facies analysis, and seismic information are compared with published detrital and bedrock geo- and thermochronology to build a Cenozoic paleogeographic reconstruction of the Andean retroarc region of Colombia, encompassing the ancestral Central Cordillera, Middle Magdalena Valley, Eastern Cordillera, and Llanos basin. We identify uplifted sediment source areas, provenance domains, depositional environments, and thickness changes to propose a refined paleogeographic evolution of eastern Colombia. We conclude that Cenozoic evolution of the northernmost Andes includes (1) a period of contractional deformation focused in the Central Cordillera and Middle Magdalena Valley that may have started by the Late Cretaceous, although thermochronological data points to maximum shortening and exhumation during the late Paleocene; (2) a period of slower deformation rates or even tectonic quiescence during the middle Eocene; and (3) a renewed phase of contractional deformation from the late Eocene to the Pleistocene/Holocene expressed in provenance, bedrock thermochronology, and increased subsidence rates in the Llanos foreland. The sedimentary response in the Llanos foreland basin is controlled by source area proximity, exhumation and shortening rates, relationships between accommodation and sediment supply, as well as potential paleoclimate forcing. This new reconstruction changes the picture of Cenozoic basin evolution offered by previous reconstructions, providing an updated chronology of deformation, which is tied to a more precise understanding of basin evolution.

Collaboration


Dive into the Mauricio Parra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel F. Stockli

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Brian K. Horton

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Jaramillo

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Victor A. Valencia

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge