Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maurijn van der Zee is active.

Publication


Featured researches published by Maurijn van der Zee.


Current Biology | 2005

Distinct Functions of the Tribolium zerknu¨llt Genes in Serosa Specification and Dorsal Closure

Maurijn van der Zee; Nicola Berns; Siegfried Roth

BACKGROUND In the long-germ insect Drosophila, a single extraembryonic membrane, the amnioserosa, covers the embryo at the dorsal side. In ancestral short-germ insects, an inner membrane, the amnion, covers the embryo ventrally, and an outer membrane, the serosa, completely surrounds the embryo. An early differentiation step partitions the uniform blastoderm into the anterior-dorsal serosa and the posterior-ventral germ rudiment giving rise to amnion and embryo proper. In Drosophila, amnioserosa formation depends on the dorsoventral patterning gene zerknüllt (zen), a derived Hox3 gene. RESULTS The short-germ beetle Tribolium castaneum possesses two zen homologs, Tc-zen1 and Tc-zen2. Tc-zen1 acts early and specifies the serosa. The loss of the serosa after Tc-zen1 RNAi is compensated by an expansion of the entire germ rudiment toward the anterior. Instead of the serosa, the amnion covers the embryo at the dorsal side, and later size regulation normalizes the early fate shifts, revealing a high degree of plasticity of short-germ development. Tc-zen2 acts later and initiates the amnion and serosa fusion required for dorsal closure. After Tc-zen2 RNAi, the amnion and serosa stay apart, and the embryo closes ventrally, assuming a completely everted (inside-out) topology. CONCLUSIONS In Tribolium, the duplication of the zen genes was accompanied by subfunctionalization. One of the paralogues, Tc-zen1, acts as an early anterior-posterior patterning gene by specifying the serosa. In absence of the serosa, Tribolium embryogenesis acquires features of long-germ development with a single extraembryonic membrane. We discuss implications for the evolution of insect development including the origin of the zen-derived anterior determinant bicoid.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect

Maurijn van der Zee; Oliver Stockhammer; Cornelia von Levetzow; Rodrigo Nunes da Fonseca; Siegfried Roth

Bone morphogenetic protein (BMP) signaling plays a major role in dorsoventral patterning in vertebrates and in Drosophila. Remarkably, in Tribolium, a beetle with an ancestral type of insect development, early BMP/dpp exhibits differential expression along the anteroposterior axis. However, the BMP/Dpp inhibitor Sog/chordin is expressed ventrally and establishes a dorsal domain of BMP/Dpp activity by transporting BMPs toward the dorsal side, like in Drosophila. Loss of Tribolium Sog not only abolishes dorsoventral polarity in the ectoderm, but also leads to the complete absence of the CNS. This phenotype suggests that sog is the main BMP antagonist in Tribolium, in contrast to vertebrates and Drosophila, which possess redundant antagonists. Surprisingly, Sog also is required for head formation in Tribolium, as are the BMP antagonists in vertebrates. Thus, in Tribolium, the system of BMP and its antagonists is less complex than in Drosophila or vertebrates and combines features from both, suggesting that it might represent an ancestral state.


Developmental Cell | 2008

Self-Regulatory Circuits in Dorsoventral Axis Formation of the Short-Germ Beetle Tribolium castaneum

Rodrigo Nunes da Fonseca; Cornelia von Levetzow; Patrick Kalscheuer; Abidin Basal; Maurijn van der Zee; Siegfried Roth

The rel/NF-kappaB transcription factor Dorsal controls dorsoventral (DV) axis formation in Drosophila. A stable nuclear gradient of Dorsal directly regulates approximately 50 target genes. In Tribolium castaneum (Tc), a beetle with an ancestral type of embryogenesis, the Dorsal nuclear gradient is not stable, but rapidly shrinks and disappears. We find that negative feedback accounts for this dynamic behavior: Tc-Dorsal and one of its target genes activate transcription of the IkB homolog Tc-cactus, terminating Dorsal function. Despite its transient role, Tc-Dorsal is strictly required to initiate DV polarity, as in Drosophila. However, unlike in Drosophila, embryos lacking Tc-Dorsal display a periodic pattern of DV cell fates along the AP axis, indicating that a self-organizing ectodermal patterning system operates independently of mesoderm or maternal DV polarity cues. Our results also elucidate how extraembryonic tissues are organized in short-germ embryos, and how patterning information is transmitted from the early embryo to the growth zone.


Development Genes and Evolution | 2008

TGFβ signaling in Tribolium: vertebrate-like components in a beetle

Maurijn van der Zee; Rodrigo Nunes da Fonseca; Siegfried Roth

The cytokines of the TGFβ superfamily are highly conserved in evolution and elicit a diverse range of cellular responses in all metazoa. In Drosophila, the signaling pathways of the two TGFβ subfamilies, Activins and Bone Morphogenetic Proteins (BMPs), have been well studied. To address the question of whether the findings from Drosophila are representative of insects in general, we analyzed the components of TGFβ-signaling present in the genome of the beetle Tribolium castaneum. We were able to identify orthologs of the BMPs Decapentaplegic and Glass bottom boat, of the Activins Activinβ and Dawdle, as well as orthologs of the less well-known ligands Myoglianin and Maverick, together with orthologs of all TGFβ receptors and cytoplasmic signal transducers present in Drosophila. This indicates that the diversity of TGFβ signaling components is generally well conserved between Drosophila and Tribolium. However, the genome of the beetle—and of the bee Apis mellifera—lacks an ortholog of the Drosophila BMP Screw but does contain a vertebrate-like BMP10 homolog which is not found in Drosophila. Concerning BMP inhibitors, Tribolium displays an even more vertebrate-like ensemble of components. We found two orthologs of the vertebrate DAN family, Dan and Gremlin, and show embryonic expression of a vertebrate-like BAMBI ortholog, all of which are absent in Drosophila. This suggests that Tribolium might have retained a more ancestral composition of TGFβ signaling components and that TGFβ signaling underwent considerable change in the Drosophila lineage. Tribolium is an excellent model to study the function of these ancestral signaling components in insects.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

The extraembryonic serosa protects the insect egg against desiccation

Chris G.C. Jacobs; Gustavo L. Rezende; Gerda E. M. Lamers; Maurijn van der Zee

Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates.


Developmental Biology | 2010

Evolution of extracellular Dpp modulators in insects: The roles of tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo

Rodrigo Nunes da Fonseca; Maurijn van der Zee; Siegfried Roth

The formation of the BMP gradient which patterns the DV axis in flies and vertebrates requires several extracellular modulators like the inhibitory protein Sog/Chordin, the metalloprotease Tolloid (Tld), which cleaves Sog/Chordin, and the CR domain protein Twisted gastrulation (Tsg). While flies and vertebrates have only one sog/chordin gene they possess several paralogues of tld and tsg. A simpler and probably ancestral situation is observed in the short-germ beetle Tribolium castaneum (Tc), which possesses only one tld and one tsg gene. Here we show that in T. castaneum tld is required for early BMP signalling except in the head region and Tc-tld function is, as expected, dependent on Tc-sog. In contrast, Tc-tsg is required for all aspects of early BMP signalling and acts in a Tc-sog-independent manner. For comparison with Drosophila melanogaster we constructed fly embryos lacking all early Tsg activity (tsg;;srw double mutants) and show that they still establish a BMP signalling gradient. Thus, our results suggest that the role of Tsg proteins for BMP gradient formation has changed during insect evolution.


Developmental and Comparative Immunology | 2013

Immune competence in insect eggs depends on the extraembryonic serosa

Chris G.C. Jacobs; Maurijn van der Zee

Innate immunity is common to all metazoans and serves as a first line of defense against pathogens. Although the immune response of adult and larval insects has been well characterized, it remains unknown whether the insect egg is able to mount an immune response. Contrary to Drosophila, Tribolium eggs develop an extraembryonic epithelium, the serosa. Epithelia are well known for their ability to fight infection, so the serosa has the potential to protect the embryo against pathogens. To test this hypothesis we created serosa-less eggs by Tc-zen1 parental RNAi. We found that the Tribolium egg upregulates several immune genes to comparable levels as adults in response to infection. Drosophila eggs and serosa-less Tribolium eggs, however, show little to no upregulation of any of the tested immune genes. We conclude that the extraembryonic serosa is crucial for the early immune competence of the Tribolium egg.


eLife | 2014

The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response

Chris G.C. Jacobs; Herman P. Spaink; Maurijn van der Zee

Drosophila larvae and adults possess a potent innate immune response, but the response of Drosophila eggs is poor. In contrast to Drosophila, eggs of the beetle Tribolium are protected by a serosa, an extraembryonic epithelium that is present in all insects except higher flies. In this study, we test a possible immune function of this frontier epithelium using Tc-zen1 RNAi-mediated deletion. First, we show that bacteria propagate twice as fast in serosa-less eggs. Then, we compare the complete transcriptomes of wild-type, control RNAi, and Tc-zen1 RNAi eggs before and after sterile or septic injury. Infection induces genes involved in Toll and IMD-signaling, melanisation, production of reactive oxygen species and antimicrobial peptides in wild-type eggs but not in serosa-less eggs. Finally, we demonstrate constitutive and induced immune gene expression in the serosal epithelium using in situ hybridization. We conclude that the serosa provides insect eggs with a full-range innate immune response. DOI: http://dx.doi.org/10.7554/eLife.04111.001


Insect Biochemistry and Molecular Biology | 2015

Elucidation of the serosal cuticle machinery in the beetle Tribolium by RNA sequencing and functional analysis of Knickkopf1, Retroactive and Laccase2.

Chris G.C. Jacobs; Nora Braak; Gerda E. M. Lamers; Maurijn van der Zee

Insects have been extraordinary successful in colonizing terrestrial habitats and this success is partly due to a protective cuticle that mainly contains chitin and proteins. The cuticle has been well studied in larvae and adults, but little attention has been paid to the cuticle of the egg. This cuticle is secreted by the serosa, an extraembryonic epithelium that surrounds the yolk and embryo in all insect eggs, but was lost in the Schizophoran flies to which Drosophila belongs. We therefore set out to investigate serosal cuticle formation and function in a beetle (Tribolium castaneum) using RNAi-mediated knockdown of three candidate genes known to structure chitin in the adult cuticle, and we aimed to identify other serosal cuticle genes using RNA sequencing. Knockdown of Knickkopf (TcKnk-1) or Retroactive (TcRtv) affects the laminar structure of the serosal cuticle, as revealed by Transmission Electron Microscopy in knockdown eggs. In the absence of this laminar structure, significantly fewer eggs survive at low humidity compared to wild-type eggs. Survival in dry conditions is also adversely affected when cross-linking among proteins and chitin is prevented by Laccase2 (TcLac-2) RNAi. Finally, we compare the transcriptomes of wild-type eggs to serosa-less eggs and find serosa-biased expression of 21 cuticle-related genes including structural components, chitin deacetylases and chitinases. Our data indicate that the serosal cuticle utilizes the same machinery for structuring the cuticle as adults. We demonstrate that the structure of the cuticle is crucial for desiccation resistance, and we put forward the serosal cuticle of Tribolium as an excellent model to study the ecological properties of the insect cuticle.


BMC Evolutionary Biology | 2014

Egg survival is reduced by grave-soil microbes in the carrion beetle, Nicrophorus vespilloides.

Chris G.C. Jacobs; Yin Wang; Heiko Vogel; Andreas Vilcinskas; Maurijn van der Zee; Daniel E. Rozen

BackgroundNicrophorus vespilloides eggs are deposited into the soil in close proximity to the decomposing vertebrate carcasses that these insects use as an obligate resource to rear their offspring. Eggs in this environment potentially face significant risks from the bacteria that proliferate in the grave-soil environment following nutrient influx from the decomposing carcass. Our aims in this paper are twofold: first, to examine the fitness effects of grave-soil bacteria to eggs, and second, to quantify egg immunocompetence as a defence against these bacteria.ResultsOur results provide strong evidence that grave-soil microbes significantly reduce the survival of Nicrophorus eggs. Females provided with microbe rich carcasses to rear broods laid fewer eggs that were less likely to hatch than females given uncontaminated carcasses. Furthermore, we show that egg hatch success is significantly reduced by bacterial exposure. Using a split-brood design, which controlled for intrinsic differences in eggs produced by different females, we found that eggs washed free of surface-associated bacteria show increased survival compared to unwashed eggs. By contrast, eggs exposed to the entomopathogen Serratia marcescens show decreased survival compared to unexposed eggs. We next tested the immune competence of eggs under challenge from bacterial infection, and found that eggs lacked endogenous production of antimicrobial peptides, despite well-developed responses in larvae. Finally, we found that despite lacking immunity, N. vespilloides eggs produce an extraembryonic serosa, indicating that the serosa has lost its immune inducing capacity in this species.ConclusionsThe dependency on ephemeral resources might strongly select for fast developing animals. Our results suggest that Nicrophorus carrion beetles, and other species developing on ephemeral resources, face a fundamental trade-off between egg immunity and development time.

Collaboration


Dive into the Maurijn van der Zee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Nunes da Fonseca

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Armisén

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Poelchau

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge