Maurille J. Fournier
University of Massachusetts Amherst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maurille J. Fournier.
Cell | 1997
Jingwei Ni; Amy L Tien; Maurille J. Fournier
Ten ACA yeast small nucleolar RNAs (snoRNAs) were shown to be required for site-specific synthesis of pseudouridine psi in ribosomal RNA. A common secondary folding motif for the snoRNAs and rRNA target segments predicts that site selection involves: (1) base pairing of the snoRNA with complementary rRNA elements flanking the site of modification, and (2) identification of a uridine located at a near-constant distance from the snoRNA ACA box. The model is supported by mutations showing that: (1) reducing the complementarity between the snoRNA and rRNA disrupts psi formation, and (2) altering the distance between the ACA box and target uridine causes an adjacent uridine to be modified. This discovery implies that most snoRNAs function in targeting nucleotide modification in rRNA: ribose methylation for the box C/D snoRNAs and psi formation for the ACA snoRNAs.
Trends in Biochemical Sciences | 2002
Wayne A. Decatur; Maurille J. Fournier
The development of three-dimensional maps of the modified nucleotides in the ribosomes of Escherichia coli and yeast has revealed that most (approximately 95% in E. coli and 60% in yeast) occur in functionally important regions. These include the peptidyl transferase centre, the A, P and E sites of tRNA- and mRNA binding, the polypeptide exit tunnel, and sites of subunit-subunit interaction. The correlations suggest that many ribosome functions benefit from nucleotide modification.
Molecular Cell | 2003
Thomas H. King; Ben Liu; Ryan R. McCully; Maurille J. Fournier
One of the oldest questions in RNA science is the role of nucleotide modification. Here, the importance of pseudouridine formation (Psi) in the peptidyl transferase center of rRNA was examined by depleting yeast cells of 1-5 snoRNAs that guide a total of six Psi modifications. Translation was impaired substantially with loss of a conserved Psi in the A site of tRNA binding. Depletion of other Psis had subtle or no apparent effect on activity; however, synergistic effects were observed in some combinations. Pseudouridines are proposed to enhance ribosome activity by altering rRNA folding and interactions, with some Psis having greater effects than others. The possibility that modifying snoRNPs might affect ribosome structure in other ways is also discussed.
The EMBO Journal | 1998
Dmitry Samarsky; Maurille J. Fournier; Robert H. Singer; Edouard Bertrand
Most small nucleolar RNAs (snoRNAs) fall into two families, known as the box C/D and box H/ACA snoRNAs. The various box elements are essential for snoRNA production and for snoRNA‐directed modification of rRNA nucleotides. In the case of the box C/D snoRNAs, boxes C and D and an adjoining stem form a vital structure, known as the box C/D motif. Here, we examined expression of natural and artificial box C/D snoRNAs in yeast and mammalian cells, to assess the role of the box C/D motif in snoRNA localization. The results demonstrate that the motif is necessary and sufficient for nucleolar targeting, both in yeast and mammals. Moreover, in mammalian cells, RNA is targeted to coiled bodies as well. Thus, the box C/D motif is the first intranuclear RNA trafficking signal identified for an RNA family. Remarkably, it also couples snoRNA localization with synthesis and, most likely, function. The distribution of snoRNA precursors in mammalian cells suggests that this coupling is provided by a specific protein(s) which binds the box C/D motif during or rapidly after snoRNA transcription. The conserved nature of the box C/D motif indicates that its role in coupling production and localization of snoRNAs is of ancient evolutionary origin.
Virology | 1991
Peter W. Mason; Steven Pincus; Maurille J. Fournier; Thomas L. Mason; Robert E. Shope; Enzo Paoletti
Four recombinant vaccinia viruses were engineered for expression of different portions of the Japanese encephalitis virus (JEV) open reading frame. All four recombinant vaccinias contained the NS1 and NS2A genes, and each of these viruses specified the synthesis, glycosylation, and secretion of the nonstructural glycoprotein (NS1). All four recombinants also contained the E gene, and each virus correctly directed the synthesis and glycosylation of the envelope glycoprotein (E). Interestingly, two of these viruses (vP555 and vP650), which expressed the prM gene in addition to E and NS1, produced an extracellular hemagglutinin containing M and E that migrated in sucrose gradients similarly to the slowly-sedimenting hemagglutinin found in the culture fluid of JEV-infected cells. Immunization of 3-week-old mice with the recombinant viruses vP555 and vP658 resulted in immune responses to NS1, whereas only the virus that directed the synthesis of extracellular forms of E (vP555) induced an immune response to E. Both viruses provided protection against lethal challenge with JEV. Animals given two inoculations with vP555 were fully protected from greater than 10,000 LD50 of JEV. This high level of protection was correlated with the production of high titers of neutralizing and hemagglutination-inhibiting antibodies.
Molecular and Cellular Biology | 1999
Yeganeh Zebarjadian; Thomas H. King; Maurille J. Fournier; Louise Clarke; John Carbon
ABSTRACT In budding yeast (Saccharomyces cerevisiae), the majority of box H/ACA small nucleolar RNPs (snoRNPs) have been shown to direct site-specific pseudouridylation of rRNA. Among the known protein components of H/ACA snoRNPs, the essential nucleolar protein Cbf5p is the most likely pseudouridine (Ψ) synthase. Cbf5p has considerable sequence similarity to Escherichia coli TruBp, a known Ψ synthase, and shares the “KP” and “XLD” conserved sequence motifs found in the catalytic domains of three distinct families of known and putative Ψ synthases. To gain additional evidence on the role of Cbf5p in rRNA biosynthesis, we have used in vitro mutagenesis techniques to introduce various alanine substitutions into the putative Ψ synthase domain of Cbf5p. Yeast strains expressing these mutatedcbf5 genes in a cbf5Δ null background are viable at 25°C but display pronounced cold- and heat-sensitive growth phenotypes. Most of the mutants contain reduced levels of Ψ in rRNA at extreme temperatures. Substitution of alanine for an aspartic acid residue in the conserved XLD motif of Cbf5p (mutantcbf5D95A) abolishes in vivo pseudouridylation of rRNA. Some of the mutants are temperature sensitive both for growth and for formation of Ψ in the rRNA. In most cases, the impaired growth phenotypes are not relieved by transcription of the rRNA from a polymerase II-driven promoter, indicating the absence of polymerase I-related transcriptional defects. There is little or no abnormal accumulation of pre-rRNAs in these mutants, although preferential inhibition of 18S rRNA synthesis is seen in mutantcbf5D95A, which lacks Ψ in rRNA. A subset of mutations in the Ψ synthase domain impairs association of the altered Cbf5p proteins with selected box H/ACA snoRNAs, suggesting that the functional catalytic domain is essential for that interaction. Our results provide additional evidence that Cbf5p is the Ψ synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes.
Molecular and Cellular Biology | 1990
H D Li; J Zagorski; Maurille J. Fournier
Repression of an essential nucleolar small nuclear RNA (snRNA) gene of Saccharomyces cerevisiae was shown to result in impaired production of 18S rRNA. The effect, observed for an snRNA species of 128 nucleotides (snR128), was evident within one generation after the onset of SNR128 gene repression and correlated well with depletion of the snRNA. The steady-state mass ratio of 18S RNA to 25S RNA decreased eightfold over the course of the analysis. Results from pulse-chase assays revealed the basis of the imbalance to be underaccumulation of 18S RNA and its 20S precursor. This effect appears to result from impairment of processing of the 35S rRNA transcript at sites that define the 20S species coupled with rapid turnover of unstable intermediates. Possible bases for the effects observed are discussed. A common U14 designation is proposed for the structurally related yeast snRNA and 4.5S hybRNAs from amphibians and mammals.
Trends in Biochemical Sciences | 1995
Jean-Pierre Bachellerie; Bernard Michot; Monique Nicoloso; Andrey Balakin; Jingwei Ni; Maurille J. Fournier
A growing subset of small nucleolar RNAs (snoRNAs) contains long stretches of sequence complementarity to conserved sequences in mature ribosomal RNA (rRNA). This article reviews current knowledge about these complementarities and proposes that these antisense snoRNAs might function in pre-rRNA folding, base modification and ribosomal ribonucleoprotein assembly, in some cases acting as RNA chaperones.
Nature | 1997
Seungju M. Yu; Vincent P. Conticello; Guanghui Zhang; Christoph Kayser; Maurille J. Fournier; Thomas L. Mason; David A. Tirrell
Solutions and melts of stiff (‘rod-like’) macromolecules often exhibit nematic liquid crystalline phases characterized by orientational, but not positional, molecular order,. Smectic phases, in which macromolecular rods are organized into layers roughly perpendicular to the direction of molecular orientation, are rare, owing at least in part to the polydisperse nature (distribution of chain lengths) of polymers prepared by conventional polymerization processes. Bacterial methods for polypeptide synthesis, in which artificial genes encoding the polymer are expressed in bacterial vectors, offer the opportunity to make macromolecules with very well defined chain lengths. Here we show that a monodisperse derivative of poly(γ-benzyl α,L-glutamate) prepared in this way shows smectic ordering in solution and in films. This result suggests that methods for preparing monodisperse polymers might provide access to new smectic phases with layer spacings that are susceptible to precise control on the scale of tens of nanometres.
Molecular and Cellular Biology | 2001
Thomas H. King; Wayne A. Decatur; Edouard Bertrand; Maxwell Es; Maurille J. Fournier
ABSTRACT Biogenesis of small nucleolar RNA-protein complexes (snoRNPs) consists of synthesis of the snoRNA and protein components, snoRNP assembly, and localization to the nucleolus. Recently, two nucleoplasmic proteins from mice were observed to bind to a model box C/D snoRNA in vitro, suggesting that they function at an early stage in snoRNP biogenesis. Both proteins have been described in other contexts. The proteins, called p50 and p55 in the snoRNA binding study, are highly conserved and related to each other. Both have Walker A and B motifs characteristic of ATP- and GTP-binding and nucleoside triphosphate-hydrolyzing domains, and the mammalian orthologs have DNA helicase activity in vitro. Here, we report that theSaccharomyces cerevisiae ortholog of p50 (Rvb2, Tih2p, and other names) is required for production of C/D snoRNAs in vivo and, surprisingly, H/ACA snoRNAs as well. Point mutations in the Walker A and B motifs cause temperature-sensitive or lethal growth phenotypes and severe defects in snoRNA accumulation. Notably, depletion of p50 (called Rvb2 in this study) also impairs localization of C/D and H/ACA core snoRNP proteins Nop1p and Gar1p, suggesting a defect(s) in snoRNP assembly or trafficking to the nucleolus. Findings from other studies link Rvb2 orthologs with chromatin remodeling and transcription. Taken together, the present results indicate that Rvb2 is involved in an early stage of snoRNP biogenesis and may play a role in coupling snoRNA synthesis with snoRNP assembly and localization.