Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maurizio Averna is active.

Publication


Featured researches published by Maurizio Averna.


European Heart Journal | 2013

Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society

Børge G. Nordestgaard; M.J. Chapman; S.E. Humphries; Henry N. Ginsberg; Luis Masana; Olivier S. Descamps; Olov Wiklund; Robert A. Hegele; Frederick J. Raal; J.C. Defesche; Albert Wiegman; R.D.D. Santos; Gerald F. Watts; Klaus G. Parhofer; G.K. Hovingh; Petri T. Kovanen; Catherine Boileau; Maurizio Averna; Jan Borén; Eric Bruckert; A.L. Catapano; Jan Albert Kuivenhoven; P.E. Pajukanta; Kausik K. Ray; Anton F. H. Stalenhoef; E.S.G. Stroes; M.-R. Taskinen; Anne Tybjærg-Hansen

Aims The first aim was to critically evaluate the extent to which familial hypercholesterolaemia (FH) is underdiagnosed and undertreated. The second aim was to provide guidance for screening and treatment of FH, in order to prevent coronary heart disease (CHD). Methods and results Of the theoretical estimated prevalence of 1/500 for heterozygous FH, <1% are diagnosed in most countries. Recently, direct screening in a Northern European general population diagnosed approximately 1/200 with heterozygous FH. All reported studies document failure to achieve recommended LDL cholesterol targets in a large proportion of individuals with FH, and up to 13-fold increased risk of CHD. Based on prevalences between 1/500 and 1/200, between 14 and 34 million individuals worldwide have FH. We recommend that children, adults, and families should be screened for FH if a person or family member presents with FH, a plasma cholesterol level in an adult ≥8 mmol/L(≥310 mg/dL) or a child ≥6 mmol/L(≥230 mg/dL), premature CHD, tendon xanthomas, or sudden premature cardiac death. In FH, low-density lipoprotein cholesterol targets are <3.5 mmol/L(<135 mg/dL) for children, <2.5 mmol/L(<100 mg/dL) for adults, and <1.8 mmol/L(<70 mg/dL) for adults with known CHD or diabetes. In addition to lifestyle and dietary counselling, treatment priorities are (i) in children, statins, ezetimibe, and bile acid binding resins, and (ii) in adults, maximal potent statin dose, ezetimibe, and bile acid binding resins. Lipoprotein apheresis can be offered in homozygotes and in treatment-resistant heterozygotes with CHD. Conclusion Owing to severe underdiagnosis and undertreatment of FH, there is an urgent worldwide need for diagnostic screening together with early and aggressive treatment of this extremely high-risk condition.


The New England Journal of Medicine | 1990

Thromboxane Biosynthesis and Platelet Function in Type II Diabetes Mellitus

Giovanni Davì; Isabella Catalano; Maurizio Averna; Alberto Notarbartolo; A. Strano; Giovanni Ciabattoni; Carlo Patrono

It has been suggested that platelet hyperreactivity in patients with diabetes mellitus is associated with increased platelet production of thromboxane. We therefore compared the excretion of a thromboxane metabolite and platelet function in 50 patients with Type II diabetes mellitus who had normal renal function and clinical evidence of macrovascular disease and in 32 healthy controls. The mean (+/- SD) excretion rate of urinary 11-dehydro-thromboxane B2 was significantly higher in the patients than in the controls (5.94 +/- 3.68 vs. 1.50 +/- 0.79 nmol per day; P less than 0.001), irrespective of the type of macrovascular complication. Tight metabolic control achieved with insulin therapy reduced the levels of 11-dehydro-thromboxane B2 by approximately 50 percent. The fractional conversion of exogenous thromboxane B2 (infused at a rate of 4.5, 45.3, or 226.4 fmol per kilogram of body weight per second) to urinary 11-dehydro-thromboxane B2 was assessed in four patients, in whom it averaged 5.4 +/- 0.1 percent; this value did not differ from that measured in healthy subjects. Aspirin in low doses (50 mg per day for seven days) reduced urinary excretion of the metabolite by approximately 80 percent in four patients. The fact that thromboxane biosynthesis recovered over the following 10 days was consistent with a platelet origin of the urinary metabolite.(ABSTRACT TRUNCATED AT 250 WORDS)


The Lancet | 2013

Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study

Marina Cuchel; Emma A. Meagher; Hendrik du Toit Theron; Dirk Blom; A. David Marais; Robert A. Hegele; Maurizio Averna; Cesare R. Sirtori; Prediman K. Shah; Daniel Gaudet; Claudia Stefanutti; Giovanni Battista Vigna; Anna M.E. Du Plessis; Kathleen J. Propert; William J. Sasiela; LeAnne T. Bloedon; Daniel J. Rader

BACKGROUND Patients with homozygous familial hypercholesterolaemia respond inadequately to existing drugs. We aimed to assess the efficacy and safety of the microsomal triglyceride transfer protein inhibitor lomitapide in adults with this disease. METHODS We did a single-arm, open-label, phase 3 study of lomitapide for treatment of patients with homozygous familial hypercholesterolemia. Current lipid lowering therapy was maintained from 6 weeks before baseline through to at least week 26. Lomitapide dose was escalated on the basis of safety and tolerability from 5 mg to a maximum of 60 mg a day. The primary endpoint was mean percent change in levels of LDL cholesterol from baseline to week 26, after which patients remained on lomitapide through to week 78 for safety assessment. Percent change from baseline to week 26 was assessed with a mixed linear model. FINDINGS 29 men and women with homozygous familial hypercholesterolaemia, aged 18 years or older, were recruited from 11 centres in four countries (USA, Canada, South Africa, and Italy). 23 of 29 enrolled patients completed both the efficacy phase (26 weeks) and the full study (78 weeks). The median dose of lomitapide was 40 mg a day. LDL cholesterol was reduced by 50% (95% CI -62 to -39) from baseline (mean 8·7 mmol/L [SD 2·9]) to week 26 (4·3 mmol/L [2·5]; p<0·0001). Levels of LDL cholesterol were lower than 2·6 mmol/L in eight patients at 26 weeks. Concentrations of LDL cholesterol remained reduced by 44% (95% CI -57 to -31; p<0·0001) at week 56 and 38% (-52 to -24; p<0·0001) at week 78. Gastrointestinal symptoms were the most common adverse event. Four patients had aminotransaminase levels of more than five times the upper limit of normal, which resolved after dose reduction or temporary interruption of lomitapide. No patient permanently discontinued treatment because of liver abnormalities. INTERPRETATION Our study suggests that treatment with lomitapide could be a valuable drug in the management of homozygous familial hypercholesterolaemia. FUNDING FDA Office of the Orphan Product Development, Aegerion Pharmaceuticals.


European Heart Journal | 2014

Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society

Marina Cuchel; Eric Bruckert; Henry N. Ginsberg; Raal Fj; Raul D. Santos; Robert A. Hegele; Jan Albert Kuivenhoven; Børge G. Nordestgaard; Olivier S. Descamps; Elisabeth Steinhagen-Thiessen; Anne Tybjærg-Hansen; Gerald F. Watts; Maurizio Averna; Catherine Boileau; Jan Borén; Alberico L. Catapano; Joep C. Defesche; G. Kees Hovingh; Steve E. Humphries; Petri T. Kovanen; Luis Masana; Päivi Pajukanta; Parhofer Kg; Kausik K. Ray; Anton F. H. Stalenhoef; Erik S. G. Stroes; Marja-Riitta Taskinen; Albert Wiegman; Olov Wiklund; M. John Chapman

Aims Homozygous familial hypercholesterolaemia (HoFH) is a rare life-threatening condition characterized by markedly elevated circulating levels of low-density lipoprotein cholesterol (LDL-C) and accelerated, premature atherosclerotic cardiovascular disease (ACVD). Given recent insights into the heterogeneity of genetic defects and clinical phenotype of HoFH, and the availability of new therapeutic options, this Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society (EAS) critically reviewed available data with the aim of providing clinical guidance for the recognition and management of HoFH. Methods and results Early diagnosis of HoFH and prompt initiation of diet and lipid-lowering therapy are critical. Genetic testing may provide a definitive diagnosis, but if unavailable, markedly elevated LDL-C levels together with cutaneous or tendon xanthomas before 10 years, or untreated elevated LDL-C levels consistent with heterozygous FH in both parents, are suggestive of HoFH. We recommend that patients with suspected HoFH are promptly referred to specialist centres for a comprehensive ACVD evaluation and clinical management. Lifestyle intervention and maximal statin therapy are the mainstays of treatment, ideally started in the first year of life or at an initial diagnosis, often with ezetimibe and other lipid-modifying therapy. As patients rarely achieve LDL-C targets, adjunctive lipoprotein apheresis is recommended where available, preferably started by age 5 and no later than 8 years. The number of therapeutic approaches has increased following approval of lomitapide and mipomersen for HoFH. Given the severity of ACVD, we recommend regular follow-up, including Doppler echocardiographic evaluation of the heart and aorta annually, stress testing and, if available, computed tomography coronary angiography every 5 years, or less if deemed necessary. Conclusion This EAS Consensus Panel highlights the need for early identification of HoFH patients, prompt referral to specialized centres, and early initiation of appropriate treatment. These recommendations offer guidance for a wide spectrum of clinicians who are often the first to identify patients with suspected HoFH.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1995

Inhibition of Thromboxane Biosynthesis and Platelet Function by Simvastatin in Type IIa Hypercholesterolemia

Alberto Notarbartolo; Giovanni Davı̀; Maurizio Averna; Carlo M. Barbagallo; Antonina Ganci; Carlo Giammarresi; Francesco P. La Placa; Carlo Patrono

Abstract Thromboxane A2 (TXA2) biosynthesis is enhanced in the majority of patients with type IIa hypercholesterolemia. Because simvastatin (a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor) was previously shown to reduce platelet aggregation and TXB2 production ex vivo, we investigated TXA2 biosynthesis and platelet function in 24 patients with type IIa hypercholesterolemia randomized to receive in a double-blind fashion simvastatin (20 mg/d) or placebo for 3 months. The urinary excretion of 11-dehydro-TXB2, largely a reflection of platelet TXA2 production in vivo, was measured by a previously validated radioimmunoassay technique. Blood lipid levels and urinary 11-dehydro-TXB2 excretion were significantly ( P <.001) reduced by simvastatin. In contrast, placebo-treated patients did not show any statistically significant changes in either blood lipids or 11-dehydro-TXB2 excretion. The reduction in 11-dehydro-TXB2 associated with simvastatin was correlated with the reduction in total cholesterol ( r =.81, P <.0001), LDL cholesterol ( r =.79, P <.0001), and apolipoprotein B ( r =.76, P <.0001) levels. Platelets from patients with type IIa hypercholesterolemia required significantly ( P <.01) more collagen and ADP to aggregate and synthesized less TXB2 in response to both agonists after simvastatin therapy. Bleeding time, platelet sensitivity to Iloprost, and blood lipoprotein(a) and HDL cholesterol levels were not significantly affected by either treatment. We conclude that enhanced TXA2 biosynthesis in type IIa hypercholesterolemia is, at least in part, dependent on abnormal cholesterol levels and/or other simvastatin-sensitive mechanisms affecting platelet function.


Nutrition Metabolism and Cardiovascular Diseases | 2010

A novel component of the metabolic syndrome: The oxidative stress

Eugenia Hopps; Davide Noto; Gregorio Caimi; Maurizio Averna

The metabolic syndrome (MS) represents a cluster of cardiovascular (CV) risk factors associated to CV disease and type 2 diabetes. It is still under debate whether MS is a mere aggregation of risk factors or it represents a clinical entity with visceral obesity as underlying pathophysiological trigger. The publication of several diagnostic criteria of MS by scientific associations or experts panels reflects this uncertainty in understanding the real nature of MS. Besides the metabolic disturbances of MS, as visceral obesity, hypertriglyceridemia, low HDL cholesterol, hypertension and hyperglycemia, novel mechanisms of arterial damage have been identified. This paper reviews the evidence showing that MS and MS factors are characterized by increased oxidative stress, a relevant factor contributing to the development of metabolic and cardiovascular complications. In the next future, the measure of plasma oxidative stress may contribute to identify a subset of MS patients at increased CV risk, candidates to more intensive therapies.


European Heart Journal | 2015

Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment

Albert Wiegman; Samuel S. Gidding; Gerald F. Watts; M.J. Chapman; Henry N. Ginsberg; Marina Cuchel; Leiv Ose; Maurizio Averna; Catherine Boileau; Jan Borén; Eric Bruckert; A.L. Catapano; Joep C. Defesche; Olivier S. Descamps; Robert A. Hegele; G.K. Hovingh; S.E. Humphries; Petri T. Kovanen; Jan Albert Kuivenhoven; Luis Masana; Børge G. Nordestgaard; Päivi Pajukanta; Klaus G. Parhofer; Frederick J. Raal; Kausik K. Ray; Raul D. Santos; Anton F. H. Stalenhoef; Elisabeth Steinhagen-Thiessen; Erik S.G. Stroes; Marja-Riitta Taskinen

Familial hypercholesterolaemia (FH) is a common genetic cause of premature coronary heart disease (CHD). Globally, one baby is born with FH every minute. If diagnosed and treated early in childhood, individuals with FH can have normal life expectancy. This consensus paper aims to improve awareness of the need for early detection and management of FH children. Familial hypercholesterolaemia is diagnosed either on phenotypic criteria, i.e. an elevated low-density lipoprotein cholesterol (LDL-C) level plus a family history of elevated LDL-C, premature coronary artery disease and/or genetic diagnosis, or positive genetic testing. Childhood is the optimal period for discrimination between FH and non-FH using LDL-C screening. An LDL-C ≥5 mmol/L (190 mg/dL), or an LDL-C ≥4 mmol/L (160 mg/dL) with family history of premature CHD and/or high baseline cholesterol in one parent, make the phenotypic diagnosis. If a parent has a genetic defect, the LDL-C cut-off for the child is ≥3.5 mmol/L (130 mg/dL). We recommend cascade screening of families using a combined phenotypic and genotypic strategy. In children, testing is recommended from age 5 years, or earlier if homozygous FH is suspected. A healthy lifestyle and statin treatment (from age 8 to 10 years) are the cornerstones of management of heterozygous FH. Target LDL-C is <3.5 mmol/L (130 mg/dL) if >10 years, or ideally 50% reduction from baseline if 8–10 years, especially with very high LDL-C, elevated lipoprotein(a), a family history of premature CHD or other cardiovascular risk factors, balanced against the long-term risk of treatment side effects. Identifying FH early and optimally lowering LDL-C over the lifespan reduces cumulative LDL-C burden and offers health and socioeconomic benefits. To drive policy change for timely detection and management, we call for further studies in the young. Increased awareness, early identification, and optimal treatment from childhood are critical to adding decades of healthy life for children and adolescents with FH.


The Lancet Diabetes & Endocrinology | 2014

The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management

Robert A. Hegele; Henry N. Ginsberg; M. John Chapman; Børge G. Nordestgaard; Jan Albert Kuivenhoven; Maurizio Averna; Jan Borén; Eric Bruckert; Alberico L. Catapano; Olivier S. Descamps; G. Kees Hovingh; Steve E. Humphries; Petri T. Kovanen; Luis Masana; Päivi Pajukanta; Klaus G. Parhofer; Frederick J. Raal; Kausik K. Ray; Raul D. Santos; Anton F. H. Stalenhoef; Erik S.G. Stroes; Marja-Riitta Taskinen; Anne Tybjærg-Hansen; Gerald F. Watts; Olov Wiklund

Plasma triglyceride concentration is a biomarker for circulating triglyceride-rich lipoproteins and their metabolic remnants. Common mild-to-moderate hypertriglyceridaemia is typically multigenic, and results from the cumulative burden of common and rare variants in more than 30 genes, as quantified by genetic risk scores. Rare autosomal recessive monogenic hypertriglyceridaemia can result from large-effect mutations in six different genes. Hypertriglyceridaemia is exacerbated by non-genetic factors. On the basis of recent genetic data, we redefine the disorder into two states: severe (triglyceride concentration >10 mmol/L), which is more likely to have a monogenic cause; and mild-to-moderate (triglyceride concentration 2-10 mmol/L). Because of clustering of susceptibility alleles and secondary factors in families, biochemical screening and counselling for family members is essential, but routine genetic testing is not warranted. Treatment includes management of lifestyle and secondary factors, and pharmacotherapy. In severe hypertriglyceridaemia, intervention is indicated because of pancreatitis risk; in mild-to-moderate hypertriglyceridaemia, intervention can be indicated to prevent cardiovascular disease, dependent on triglyceride concentration, concomitant lipoprotein disturbances, and overall cardiovascular risk.


Circulation | 1992

Increased thromboxane biosynthesis in type IIa hypercholesterolemia.

Giovanni Davì; Maurizio Averna; Isabella Catalano; C.M. Barbagallo; Antonina Ganci; Alberto Notarbartolo; G Ciabattoni; C Patrono

BackgroundIncreased platelet thromboxane (TX)A2 production has been described in type IIa hypercholesterolemia. To verify the relevance of these capacity-related measurements to the actual rate of TXA2 biosynthesis in vivo, we studied the urinary excretion of its major enzymatic metabolites in 46 patients with type hIa hypercholesterolemia and 20 age-matched controls. Methods and ResultsUrinary 11-dehydro-TXB2 and 2,3-dinor-TXB2 were measured by previously validated radioimmunoassays. The excretion rate of 11-dehydro-TXB2 was significantly (p < 0.001) higher in patients (68.7±35.1 ng/hr, mean±SD) than in controls (22.4±9.4 ng/hr), with metabolite excretion >2 SD of the normal mean in 74% of the patients. Urinary 11-dehydro-TXB2 was significantly (p < 0.01) correlated with the threshold aggregating concentration of collagen (r = −0.641) and arachidonate (r = −0.734) and with agonist-induced platelet TXB2 production in vitro (r = 0.647 and 0.748, respectively). Moreover, a statistically significant correlation (r = 0.673, p < 0.001, n = 66) was found between 11-dehydro-TXB2 excretion and total plasma cholesterol. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor simvastatin (20 mg/day for 6 months) significantly reduced cholesterol levels by 22–28% and urinary 11-dehydro-TXB2 excretion by 32–42% in 10 patients. However, the reduction in the latter did not correlate with the reduction in the former and may have resulted from a nonspecific effect of simvastatin. Moreover, selective inhibition of platelet cyclooxygenase activity by low-dose aspirin (50 mg/day for 7 days) was associated with cumulative inhibition of 11-dehydro-TXB2 excretion by approximately 70% in six patients. ConclusionsTXA2 biosynthesis is enhanced in the majority of patients with type lla hypercholesterolemia; this is, at least in part, a consequence of abnormal cholesterol levels, as suggested by the correlation between the two. Low-dose aspirin can largely suppress increased metabolite excretion, thus suggesting that it reflects TXA2-dependent platelet activation in vivo.


Journal of Lipid Research | 2003

Fatty liver in familial hypobetalipoproteinemia triglyceride assembly into VLDL particles is affected by the extent of hepatic steatosis

Gustav Schonfeld; Bruce W. Patterson; Dmitriy A. Yablonskiy; Tariq Tanoli; Maurizio Averna; Nizar Elias; Pin Yue; Joseph J. H. Ackerman

Familial hypobetalipoproteinemia (FHBL) subjects may develop fatty liver. Liver fat was assessed in 21 FHBL with six different apolipoprotein B (apoB) truncations (apoB-4 to apoB-89) and 14 controls by magnetic resonance spectroscopy (MRS). Liver fat percentages were 16.7 ± 11.5 and 3.3 ± 2.9 (mean ± SD) (P = 0.001). Liver fat percentage was positively correlated with body mass index, waist circumference, and areas under the insulin curves of 2 h glucose tolerance tests, suggesting that obesity may affect the severity of liver fat accumulation in both groups. Despite 5-fold differences in liver fat percentage, mean values for obesity and insulin indexes were similar. Thus, for similar degrees of obesity, FHBL subjects have more hepatic fat. VLDL-triglyceride (TG)-fatty acids arise from plasma and nonplasma sources (liver and splanchnic tissues). To assess the relative contributions of each, [2H2]palmitate was infused over 12 h in 13 FHBL subjects and 11 controls. Isotopic enrichment of plasma free palmitate and VLDL-TG-palmitate was determined by mass spectrometry. Non-plasma sources contributed 51 ± 15% in FHBL and 37 ± 13% in controls (P = 0.02). Correlations of liver fat percentage and percent VLDL-TG-palmitate from liver were r = 0.89 (P = 0.0001) for FHBL subjects and r = 0.69 (P = 0.01) for controls. Thus, apoB truncation-producing mutations result in fatty liver and in altered assembly of VLDL-TG.

Collaboration


Dive into the Maurizio Averna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrizia Tarugi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge