Maurizio Azzaro
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maurizio Azzaro.
Marine and Freshwater Research | 2005
Gabriella Caruso; L. S. Monticelli; Filippo Azzaro; Maurizio Azzaro; Franco Decembrini; R. La Ferla; M. Leonardi; Renata Zaccone
Three microbial extracellular enzymes, leucine aminopeptidase (LAP), β-glucosidase (β-glu) and alkaline phosphatase (AP), were studied in six small Mediterranean littoral ponds, to evaluate the diversity of microbial activities relative to prevailing environmental conditions. The marked diversification of the trophic states, ranging from oligotrophy to eutrophy, in the ponds was reflected in a range of enzyme patterns at different spatial and temporal scales. There were higher levels and greater variability of microbial activity in the oldest and most ‘confined’ ponds (ranges: 0.55–4360.00 nm h−1, 0.15–76.44 nm h−1, 1.29–1600.00 nm h−1 for LAP, β-glu and AP respectively) compared with the youngest and most seaward ponds (ranges: 22.64–612.0 nm h−1, 0.06–48.89 nm h−1, 0.32–744.0 nm h−1 for LAP, β-glu and AP respectively). The close relationship of the degradative potential with chlorophyll-a and particulate organic carbon could be a consequence of the stimulating effect of phytoplankton-released polymeric compounds (organic matter) and/or a response of the microbial community to warm temperatures, which were recorded from July to September. Within an area less than 1 km2, different aquatic ecosystems coexist and maintain their distinctive properties in terms of microbial biogeochemical processes.
Critical Reviews in Microbiology | 2016
Gabriella Caruso; Rosabruna La Ferla; Maurizio Azzaro; Annamaria Zoppini; G. Marino; T. Petochi; Cinzia Corinaldesi; Marcella Leonardi; Renata Zaccone; Serena Fonda Umani; Carmela Caroppo; L. S. Monticelli; Filippo Azzaro; Franco Decembrini; Giovanna Maimone; Rosa Anna Cavallo; Loredana Stabili; Nadezhda Todorova; Ventzislav Karamfilov; Eugenio Rastelli; Simone Cappello; Maria Immacolata Acquaviva; Marcella Narracci; Roberta De Angelis; Paola Del Negro; Mario Latini; Roberto Danovaro
Abstract The EU Marine Strategy Framework Directive 2008/56/EC (MSFD) defines a framework for Community actions in the field of marine environmental policy in order to achieve and/or maintain the Good Environmental Status (GES) of the European seas by 2020. Microbial assemblages (from viruses to microbial-sized metazoa) provide a major contribution to global biodiversity and play a crucial role in the functioning of marine ecosystems, but are largely ignored by the MSFD. Prokaryotes are only seen as “microbial pathogens,” without defining their role in GES indicators. However, structural or functional prokaryotic variables (abundance, biodiversity and metabolism) can be easily incorporated into several MSFD descriptors (i.e. D1. biodiversity, D4. food webs, D5. eutrophication, D8. contaminants and D9. contaminants in seafood) with beneficial effects. This review provides a critical analysis of the current MSFD descriptors and illustrates the reliability and advantages of the potential incorporation of some prokaryotic variables within the set of indicators of marine environmental quality. Following a cost/benefit analysis against scientific and economic criteria, we conclude that marine microbial components, and particularly prokaryotes, are highly effective for detecting the effects of anthropogenic pressures on marine environments and for assessing changes in the environmental health status. Thus, we recommend the inclusion of these components in future implementations of the MSFD.
Deep-sea Research Part I-oceanographic Research Papers | 2001
Rosabruna La Ferla; Maurizio Azzaro
First data on microbial respiration in the Levantine Sea are reported with the aim of assessing the distribution of oxidative processes in association with the main Mediterranean water masses and the changing physical structure determined by the Eastern Mediterranean Transient. Respiratory rates, in terms of metabolic carbon dioxide production, were estimated from measured electron transport system activities in the polygonal area of the Levantine Sea (32.5–36.5 N Latitude, 26.0–30.25 E Longitude) and at Station Geo’95, in the Ionian Sea (35834.88 N; 17814.99 E). At the Levantine Sea, the mean carbon dioxide production rate decreased from the upper to the deeper layers and varied from 22.0 � 12.4m gC h � 1 m � 3 in the euphotic layer to 1.30 � 0.5m gC h � 1 m � 3 in the depth range between 1600 and 3000 m. Significant differences were found among upper, intermediate and bottom layers. The euphotic zone supported a daily carbon dioxide production of 96.6 mg C d � 1 m � 2 while the aphotic zone (between 200 and 3000 m) sustained a 177.1 mg C d � 1 m � 2 carbon dioxide production. In Station Geo’95, the carbon dioxide production rates amounted to 170.4 and 102.2 mg C d � 1 m � 2 in the euphotic and aphotic zones, respectively. The rates determined in the identified water masses showed a tight coupling of respiratory processes and Mediterranean circulation patterns. The increasing respiratory rates in the deep layers of the Levantine Sea are explained by the introduction of younger waters recently formed in the Aegean Sea. # 2001 Elsevier Science Ltd. All rights reserved.
Chemistry and Ecology | 2002
Rosabruna La Ferla; Renata Zaccone; Maurizio Azzaro; Gabriella Caruso
The carbon transfer through the microbial community in two areas of the Northern Adriatic Sea was estimated by proteolytic and respiratory activities during four oceanographic surveys carried out in June, 1996, 1997 and February, 1997, 1998. In front of the Po Delta (area A), the mean rates of proteolytic activity range from 4.9 to 9.9 r µg r C r h r l; near Ancona (area B), they range from 3.1 to 7.6 r µg r C r h r l. Respiratory rates vary between 0.19 and 2.29 and between 0.24 and 1.40 r µg r C r h r l in areas A and B, respectively. In general, high rates occur in the surface layers, within the first 10 r m of depth. In area A, proteolytic and respiratory rates undergo seasonal course, with high activity in warm periods. In area B, respiration and bacterioplankton abundance increase from the first to the second year, whilst proteolytic activity decreases. The sequence of metabolic steps in the carbon transfer within the bacteria, from the biotic vs . the abiotic compartment, was drawn in order to define the actual role of bacterial biomass in the biogeochemical fluxes in an ecosystem which often suffers distrophic crises. Respiratory turnover rates, in the upper 10 r m depth, reach low values in cold periods and high values in June, 1997. The carbon transfer versus mineralization flows better in the summer period, in particular in June, 1997. However, the bacterial growth efficiency ranges from 17 to 38% in area A and from 13 to 44% in area B with highest values in February, 1997, when bacteria contribute in a relevant way to the overall respiration.
Chemistry and Ecology | 2004
Renata Zaccone; Carmela Caroppo; R. La Ferla; D. Zampino; Gabriella Caruso; M. Leonardi; Giovanna Maimone; Maurizio Azzaro; R. Sitran
An integrated study was carried out to follow the temporal evolution of microbiological parameters during a 48 h period, in relation to the deep chlorophyll maximum (DCM) at a coastal station. The micro-organisms showed an active role in the environment and a different distribution, without a clear diel cycle. The phytoplankton community, responsible for the DCM, consisted mainly of diatoms. Their distribution in relation to pycnocline showed an opposite trend with respect to picophytoplankton. Total bacterioplankton contributed to enzymatic degradation of particulated organic carbon (by producing β-glucosidase and aminopeptidase), with peaks related to changes in the main water current. We estimated that about 25% of particulate organic carbon per day may be hydrolysed by bacteria. The living bacterioplankton represented 20% of the total. The picophytoplankton fraction contributed significantly to the high values of alkaline phosphatase, suggesting a fast P regeneration. Respiration showed significant correlations with the physical and chemical parameters as well as with the different planktonic fractions.
Aquatic Ecology | 1999
Rosabruna La Ferla; Maurizio Azzaro; Giuseppina Chiodo
Respiratory activity and metabolic CO2production of the microplankton in the Otranto Strait (Mediterranean Sea) were determined by monitoring the Electron Transport System activity. Ten stations were repeatedly investigated during two oceanographic surveys in February–March and August 1994. Respiratory activity and CO2 production, estimated from the surface to the bottom, were higher in the euphotic layers (0-200 m) during summer (mean values: Winter = 0.024 μg C h−1 dm−3; Summer = 0.042 μg C h−1 dm−3); in the aphotic zone (deeper than 200 m), the rates were similar throughout different seasons (0.013 and 0.014 μg C h−1 dm−3, respectively). A comparison with data collected by other authors from the euphotic layers of the Mediterranean Sea was made. Respiratory activities decreased from Western to Eastern Mediterranean Basins. The values of CO2 production, integrated between 200 and 1000 m in the Otranto Strait (mean value 237.7 mg C m−2 d−1), were compared with other data collected from the Mediterranean Sea as well as from the Pacific, Atlantic and Indian Oceans. The comparison showed the Otranto Strait to be a site of organic matter oxidation.
Chemistry and Ecology | 2010
Renata Zaccone; Gabriella Caruso; Maurizio Azzaro; Filippo Azzaro; E. Crisafi; Franco Decembrini; E. De Domenico; M. De Domenico; R. La Ferla; M. Leonardi; A. Lo Giudice; Giovanna Maimone; Monique Mancuso; Luigi Michaud; L. S. Monticelli; F. Raffa; Gioacchino Ruggeri; Vivia Bruni
The Ionian Sea represents a suitable basin for studying the biogeochemical processes mediated by microbial activities. Because of its characteristics as a crossing region between the western and eastern Mediterranean Sea, it is one of the sites most affected by changes in water mass composition and dynamics, caused by the Eastern Mediterranean Transient (EMT). To date, relatively few data exist on microbial activities in pelagic areas of the Ionian Sea. From 1998 to 2004, during different research cruises, prokaryotic parameters (abundance, extracellular enzyme activities leucine aminopeptidase, β-glucosidase, alkaline phosphatase, bacterial production and respiration) were measured together with culturable bacteria and the main physical, chemical and trophic parameters (temperature, salinity, nutrients, particulated organic matter). The aim of the study was to describe the spatial and temporal variability in microbial activities involved in the carbon and phosphorus cycles, in different layers. Results showed that organic matter transformation mediated by the microbial community displayed a significant increase in autumn, highlighting the occurrence of significant changes at meso- and bathypelagic depths. Unlike the dark ocean, bacterial growth efficiency in the Ionian Sea, which increased with depth, seemed to vary from being a source of carbon in the epipelagic layer to a sink in the meso- and bathypelagic layers. The mechanism of phosphatase regulation showed a weak inverse correlation between specific phosphatase and inorganic P in all seasons except autumn. It is worth mentioning that the reported results constitute, to the best of our knowledge, one of the available datasets giving information about microbial activities in the Ionian Sea.
Archive | 2001
R. La Ferla; Renata Zaccone; Gabriella Caruso; Maurizio Azzaro
Carbon flux through the microbial community by the determination of biomass, heterotrophic bacteria, aminopeptidase and respiratory activities has been studied in two areas of the Adriatic sea with different trophic characteristics during four oceanographic surveys, carried out in June 96,97 and February 97,98. In front of the Po delta (area A), the average rates of the carbon released by aminopeptidase activity ranged from 4.9 to 9.9 μg Cl−1 h−1 and near the Ancona coast (area B) from 3.1 to 7.6μg Cl−1 h−1, whereas the microbial respiration as metabolic carbon production (CO2) ranged from 0.19 to 2.29 and from 0.24 to 1.40μg Cl−1 h−1 in the two areas, respectively.
Hydrobiologia | 2014
R. La Ferla; Giovanna Maimone; Gabriella Caruso; Filippo Azzaro; Maurizio Azzaro; Franco Decembrini; Alessandro Cosenza; M. Leonardi; Rodolfo Paranhos
Estimation of microbial biomass depends on cell shape and size determinations, and thus, there is a wide biovolume variability among morphotypes. Nevertheless, data on morphology and morphometry of prokaryotic cells under different trophic status are seldom published, due to the methodological difficulties of cell measurements. The main question addressed in this paper concerns the suitability of prokaryotic size and shape for environmental characterization. Microbial biovolumes were compared among different ecosystems, located in temperate and tropical regions. Samples were taken from fresh, brackish, mixohaline, and estuarine waters that were classified as oligo-, meso-, eu-, and hypertrophic by comparing synoptically different trophic indices. Prokaryotic cell abundance and volume were quantified by Image Analysis, used to calculate biomass, and correlated to environmental variables. Some samples were analyzed by flow cytometry also, and data from sub-populations with a different apparent DNA content were available. Prokaryotic abundances generally increased from oligo- to hypertrophic waters while cell volumes increased from oligotrophic to eutrophic waters. Although significant correlations between cell volumes and environmental variables were detected (positive with salinity and negative with Chlorophyll-a), different morphotypes dominated each studied regions. Our results sustain the hypothesis that prokaryotic cell size and shape could be useful to ecosystem characterization.
Journal of Geophysical Research | 2014
Giulio Catalano; Maurizio Azzaro; Mauro Bastianini; L. G. Bellucci; F. Bernardi Aubry; Franco Bianchi; M. Burca; Carolina Cantoni; Gabriella Caruso; R. Casotti; Stefano Cozzi; P. Del Negro; S. Fonda Umani; Michele Giani; S. Giuliani; V. Kovacevic; R. La Ferla; L. Langone; A. Luchetta; L. S. Monticelli; S. Piacentino; Alessandra Pugnetti; M. Ravaioli; Giorgio Socal; F. Spagnoli; L. Ursella
This paper presents a winter carbon budget for the northern Adriatic Sea, obtained through direct measurements during two multidisciplinary cruises and literature data. A box model approach was adopted to integrate estimates of stocks and fluxes of carbon species over the total area. The oligotrophy at the basin scale and the start of primary productivity well before the onset of spring stratification were observed. In winter, the system underwent a complete reset, as the mixing of water masses erased any signal of previous hypoxia or anoxia episodes. The northern Adriatic Sea was phosphorus depleted with respect to C and N availability. This fact confirms the importance of mixing with deep-sea water for P supply to biological processes on the whole. Despite the abundant prokaryotic biomass, the microbial food web was less efficient in organic C production than phytoplankton. In the upper layer, the carbon produced by primary production exceeded the fraction respired by planktonic community smaller than 200 µm. On the contrary, respiration processes prevailed in the water column below the pycnocline. The carbon budget also proved that the northern Adriatic Sea can be an effective sink for atmospheric CO2 throughout the entire winter season.