Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maurizio Bertollo is active.

Publication


Featured researches published by Maurizio Bertollo.


Human Brain Mapping | 2009

Visuo-attentional and sensorimotor alpha rhythms are related to visuo-motor performance in athletes

Claudio Del Percio; Claudio Babiloni; Maurizio Bertollo; Nicola Marzano; Marco Iacoboni; Francesco Infarinato; Roberta Lizio; Massimiliano Stocchi; Claudio Robazza; Giuseppe Cibelli; S. Comani; Fabrizio Eusebi

This study tested the two following hypotheses: (i) compared with non‐athletes, elite athletes are characterized by a reduced cortical activation during the preparation of precise visuo‐motor performance; (ii) in elite athletes, an optimal visuo‐motor performance is related to a low cortical activation. To this aim, electroencephalographic (EEG; 56 channels; Be Plus EB‐Neuro) data were recorded in 18 right‐handed elite air pistol shooters and 10 right‐handed non‐athletes. All subjects performed 120 shots. The EEG data were spatially enhanced by surface Laplacian estimation. With reference to a baseline period, power decrease/increase of alpha rhythms during the preshot period indexed the cortical activation/deactivation (event‐related desynchronization/synchronization, ERD/ERS). Regarding the hypothesis (i), low‐ (about 8–10 Hz) and high‐frequency (about 10–12 Hz) alpha ERD was lower in amplitude in the elite athletes than in the non‐athletes over the whole scalp. Regarding the hypothesis (ii), the elite athletes showed high‐frequency alpha ERS (about 10–12 Hz) larger in amplitude for high score shots (50%) than for low score shots; this was true in right parietal and left central areas. A control analysis confirmed these results with another indicator of cortical activation (beta ERD, about 20 Hz). The control analysis also showed that the amplitude reduction of alpha ERD for the high compared with low score shots was not observed in the non‐athletes. The present findings globally suggest that in elite athletes (experts), visuo‐motor performance is related to a global decrease of cortical activity, as a possible index of spatially selective cortical processes (“neural efficiency”). Hum Brain Mapp, 2009.


Developmental Neuroscience | 2011

Development of mu rhythm in infants and preschool children.

Marika Berchicci; Tongsheng Zhang; L. Romero; Amanda Peters; R. Annett; U. Teuscher; Maurizio Bertollo; Yoshio Okada; Julia M. Stephen; Silvia Comani

Mu rhythm is an idling rhythm that originates in the sensorimotor cortex during rest. The frequency of mu rhythm, which is well established in adults, is 8–12 Hz, whereas the limited results available from children suggest a frequency as low as 5.4 Hz at 6 months of age, which gradually increases to the adult value. Understanding the normal development of mu rhythm has important theoretical and clinical implications since we still know very little about this signal in infants and how it develops with age. We measured mu rhythm over the left hemisphere using a pediatric magnetoencephalography (MEG) system in 25 infants (11–47 weeks), 18 preschool children (2–5 years) and 6 adults (20–39 years) for two 5-min sessions during two intermixed conditions: a rest condition in which the hands were at rest, and a prehension condition in which the subject squeezed a pipette with his/her right hand. In all participants, mu rhythm was present over the frontoparietal area during the rest condition, but was clearly suppressed during the prehension condition. Mu rhythm peak frequency, determined from the amplitude spectra, increased rapidly as a function of age from 2.75 Hz at 11 weeks to 8.25 Hz at 47 weeks (r2 = 0.83). It increased very slowly during the preschool period (3.1 ± 0.9 years; 8.5 ± 0.54 Hz). The frequency in these children was, however, lower than in adults (10.3 ± 1.2 Hz). Our results show a rapid maturation in spontaneous mu rhythm during the first year of life.


Journal of Sports Sciences | 2008

Functional impact of emotions on athletic performance: Comparing the IZOF model and the directional perception approach

Claudio Robazza; Melinda Pellizzari; Maurizio Bertollo; Yuri L. Hanin

Abstract The aim of this study was to examine the impact of emotions on athletic performance within the frameworks of the Individual Zones of Optimal Functioning (IZOF) model and the directional perception approach. Intensity, functional impact, and hedonic tone of trait and state anxiety, self-confidence, idiosyncratic emotions, and bodily symptoms were assessed in high-level Italian swimmers and track and field athletes (N = 56). Three standards of performance (poor, average, and good), derived from retrospective self-ratings across one to three competitions (a total of 90 observations), were used as independent variables in the analysis of variance of intensity, intra-individual, and direction scores of anxiety, self-confidence, idiosyncratic emotions, and bodily symptoms. Subsequently, intra-individual scores were categorized as near to or distant from optimal/dysfunctional zones and entered as the independent variable in the analysis of direction scores. The results provided support for the predictions stemming from both the IZOF model and the directional approach, as well as help in interpreting direction of anxiety and other idiosyncratic emotions within the IZOF framework. Athletes tended to perceive emotional levels approximating an individuals optimal zone as facilitative–pleasant, and emotional levels approximating an individuals dysfunctional zone as debilitative–unpleasant.


The Journal of Neuroscience | 2010

Striatal Activity during Intentional Switching Depends on Pattern Stability

Cinzia De Luca; Kelly J. Jantzen; S. Comani; Maurizio Bertollo; J. A. Scott Kelso

The theoretical framework of coordination dynamics posits complementary neural mechanisms to maintain complex behavioral patterns under circumstances that may render them unstable and to voluntarily switch between behaviors if changing internal or external conditions so demand. A candidate neural structure known to play a role in both the selection and maintenance of intentional behavior is the basal ganglia. Here, we use functional magnetic resonance imaging to explore the role of basal ganglia in intentional switching between bimanual coordination patterns that are known to differ in their stability as a function of movement rate. Key measures of pattern dynamics and switching were used to map behavior onto the associated neural circuitry to determine the relation between specific behavioral variables and activated brain areas. Results show that putamen activity is highly sensitive to pattern stability: greater activity was observed in bilateral putamen when subjects were required to switch from a more to a less stable pattern than vice versa. Since putamen activity correlated with pattern stability both before and during the switching process, its role may be to select desired actions and inhibit competing ones through parametric modulation of the intrinsic dynamics. Though compatible with recent computational models of basal ganglia function, our results further suggest that pattern stability determines how the basal ganglia efficiently and successfully select among response alternatives.


PeerJ | 2016

Proficient brain for optimal performance: the MAP model perspective

Maurizio Bertollo; Selenia di Fronso; Edson Filho; Silvia Conforto; Maurizio Schmid; Laura Bortoli; Silvia Comani; Claudio Robazza

Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS) activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP) model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1) and optimal-controlled (Type 2) performances. Methods. Ten elite shooters (6 male and 4 female) with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time) repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the “neural efficiency hypothesis.” We also observed more ERD as related to optimal-controlled performance in conditions of “neural adaptability” and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.


Journal of Adolescence | 2013

Pubertal development, physical self-perception, and motivation toward physical activity in girls

Dina Labbrozzi; Claudio Robazza; Maurizio Bertollo; Ines Bucci; Laura Bortoli

We examined the differences in physical self-perception and motivation toward physical activity in early- and mid-adolescent girls. Body Mass Index (BMI) and pubertal status, assessed by means of the Tanner scale, were collected in 11-year-old (n=74) and 13-year-old girls (n=60). The assessment included six scales from the Physical Self-Description Questionnaire, the Physical Activity Enjoyment Scale, and the Situational Intrinsic Motivation Scale. Age differences emerged, with older girls showing a poorer physical perception and lower scores in intrinsic motivation and enjoyment of physical activity. In the subsample of 11-year-olds, findings showed that more developed girls reported a poorer physical perception on the scales of body fat, global physical self-concept, and appearance, and a lower score in the PACES positive scale. Results underscore the need to promote interventions aimed at encouraging active lifestyles among children and adolescent girls, in order to prevent overweight prior to pubertal onset.


PLOS ONE | 2015

Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling.

Marcelo Vitor-Costa; Nilo Massaru Okuno; Henrique Bortolotti; Maurizio Bertollo; Paulo S. Boggio; Felipe Fregni; Leandro Ricardo Altimari

The central nervous system seems to have an important role in fatigue and exercise tolerance. Novel noninvasive techniques of neuromodulation can provide insights on the relationship between brain function and exercise performance. The purpose of this study was to determine the effects of transcranial direct current stimulation (tDCS) on physical performance and physiological and perceptual variables with regard to fatigue and exercise tolerance. Eleven physically active subjects participated in an incremental test on a cycle simulator to define peak power output. During 3 visits, the subjects experienced 3 stimulation conditions (anodal, cathodal, or sham tDCS—with an interval of at least 48 h between conditions) in a randomized, counterbalanced order to measure the effects of tDCS on time to exhaustion at 80% of peak power. Stimulation was administered before each test over 13 min at a current intensity of 2.0 mA. In each session, the Brunel Mood State questionnaire was given twice: after stimulation and after the time-to-exhaustion test. Further, during the tests, the electromyographic activity of the vastus lateralis and rectus femoris muscles, perceived exertion, and heart rate were recorded. RM-ANOVA showed that the subjects performed better during anodal primary motor cortex stimulation (491 ± 100 s) compared with cathodal stimulation (443 ± 11 s) and sham (407 ± 69 s). No significant difference was observed between the cathodal and sham conditions. The effect sizes confirmed the greater effect of anodal M1 tDCS (anodal x cathodal = 0.47; anodal x sham = 0.77; and cathodal x sham = 0.29). Magnitude-based inference suggested the anodal condition to be positive versus the cathodal and sham conditions. There were no differences among the three stimulation conditions in RPE (p = 0.07) or heart rate (p = 0.73). However, as hypothesized, RM- ANOVA revealed a main effect of time for the two variables (RPE and HR: p < 0.001). EMG activity also did not differ during the test accross the different conditions. We conclude that anodal tDCS increases exercise tolerance in a cycling-based, constant-load exercise test, performed at 80% of peak power. Performance was enhanced in the absence of changes in physiological and perceptual variables.


Journal of Sports Sciences | 2015

My heart is racing! Psychophysiological dynamics of skilled racecar drivers

Edson Filho; Selenia di Fronso; Caterina Mazzoni; Claudio Robazza; Laura Bortoli; Maurizio Bertollo

Abstract Our purpose was to test the multi-action plan model assumptions in which athletes’ psychophysiological patterns differ among optimal and suboptimal performance experiences. Nine professional drivers competing in premier race categories (e.g. Formula 3, Porsche GT3 Cup Challenge) completed the study. Data collection involved monitoring the drivers’ perceived hedonic tone, accuracy on core components of action, posture, skin temperature, respiration rate and heart rate responses during a 40-lap simulated race. Time marks, gathered at three standardised sectors, served as the performance variable. The A1GP racing simulator (Allinsport, Modena) established a realistic race platform. Specifically, the Barcelona track was chosen because of its inherently difficult nature characterised by intermittent deceleration points. Idiosyncratic analyses showed large individual differences in the drivers’ psychophysiological profile, as well as distinct patterns in regards to optimal and suboptimal performance experiences. Limitations and future research avenues are discussed. Action- (e.g. attentional control) and emotion (e.g. biofeedback training)-centred applied sport psychology implications are advanced.


Journal of Sports Sciences | 2014

Do psychobiosocial states mediate the relationship between perceived motivational climate and individual motivation in youngsters

Laura Bortoli; Maurizio Bertollo; Edson Filho; Claudio Robazza

Abstract Grounded in achievement goal theory and self-determination theory, this cross-sectional study examined the relationship between perceived motivational climate and individuals’ motivation as well as the mediation effect of psychobiosocial states as conceptualised within the individual zones of optimal functioning (IZOF) model. Young students (N = 167, age range 14–15 years) taking part in physical education classes completed measures of teacher-initiated motivational climate, task and ego orientation, motivation and psychobiosocial states. Simple and serial mediation analyses indicated that a perceived mastery climate and individuals’ task orientation were related to intrinsic motivation and identified regulation through the mediation of pleasant/functional psychobiosocial states. In contrast, a perceived performance climate was related to external regulation and amotivation through the mediation of unpleasant/dysfunctional psychobiosocial states. Regression analysis results also showed that discrete psychobiosocial states accounted for a significant proportion of variance in motivational variables. Taken together, findings highlight the role of psychobiosocial states as mediators of the relationship between motivational climate and an individual’s motivation, and suggest that educators should consider a wide range of individual’s functional and dysfunctional reactions deriving from their instructional activity.


International Journal of Sports Physiology and Performance | 2018

Recovery and Performance in Sport : Consensus Statement

Michael Kellmann; Maurizio Bertollo; Laurent Bosquet; Michel Brink; Aaron J. Coutts; Rob Duffield; Daniel Erlacher; Shona L. Halson; Anne Hecksteden; Jahan Heidari; K. Wolfgang Kallus; Romain Meeusen; Iñigo Mujika; Claudio Robazza; Sabrina Skorski; Ranel Venter; Jürgen Beckmann

The relationship between recovery and fatigue and its impact on performance has attracted the interest of sport science for many years. An adequate balance between stress (training and competition load, other life demands) and recovery is essential for athletes to achieve continuous high-level performance. Research has focused on the examination of physiological and psychological recovery strategies to compensate external and internal training and competition loads. A systematic monitoring of recovery and the subsequent implementation of recovery routines aims at maximizing performance and preventing negative developments such as underrecovery, nonfunctional overreaching, the overtraining syndrome, injuries, or illnesses. Due to the inter- and intraindividual variability of responses to training, competition, and recovery strategies, a diverse set of expertise is required to address the multifaceted phenomena of recovery, performance, and their interactions to transfer knowledge from sport science to sport practice. For this purpose, a symposium on Recovery and Performance was organized at the Technical University Munich Science and Study Center Raitenhaslach (Germany) in September 2016. Various international experts from many disciplines and research areas gathered to discuss and share their knowledge of recovery for performance enhancement in a variety of settings. The results of this meeting are outlined in this consensus statement that provides central definitions, theoretical frameworks, and practical implications as a synopsis of the current knowledge of recovery and performance. While our understanding of the complex relationship between recovery and performance has significantly increased through research, some important issues for future investigations are also elaborated.

Collaboration


Dive into the Maurizio Bertollo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Comani

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Selenia di Fronso

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Edson Filho

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar

Edson Filho

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marika Berchicci

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge