Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maurizio Corbetta is active.

Publication


Featured researches published by Maurizio Corbetta.


The Journal of Neuroscience | 1993

A PET study of visuospatial attention

Maurizio Corbetta; Francis M. Miezin; Gordon L. Shulman; Steven E. Petersen

Positron emission tomography (PET) was used to identify the neural systems involved in shifting spatial attention to visual stimuli in the left or right visual field along foveofugal or foveocentric directions. Psychophysical evidence indicated that stimuli at validly cued locations were responded to faster than stimuli at invalidly cued locations. Reaction times to invalid probes were faster when they were presented in the same than in the opposite direction of an ongoing attention movement. PET evidence indicated that superior parietal and superior frontal cortex were more active when attention was shifted to peripheral locations than when maintained at the center of gaze. Both regions encoded the visual field and not the direction of an attention shift. In the right superior parietal lobe, two distinct responses were localized for attention to left and right visual field. Finally, the superior parietal region was active when peripheral locations were selected on the basis of cognitive or sensory cues independent of the execution of an overt response. The frontal region was active only when responses were made to stimuli at selected peripheral locations. These findings indicate that parietal and frontal regions control different aspects of spatial selection. The functional asymmetry in superior parietal cortex may be relevant for the pathophysiology of unilateral neglect.


Journal of Cognitive Neuroscience | 1997

Common blood flow changes across visual tasks: Ii. decreases in cerebral cortex

Gordon L. Shulman; Julie A. Fiez; Maurizio Corbetta; Randy L. Buckner; Francis M. Miezin; Marcus E. Raichle; Steven E. Petersen

Nine previous positron emission tomography (PET) studies of human visual information processing were reanalyzed to determine the consistency across experiments of blood flow decreases during active tasks relative to passive viewing of the same stimulus array. Areas showing consistent decreases during active tasks included posterior cingulate/precuneous (Brodmann area, BA 31/7), left (BAS 40 and 39/19) and right (BA 40) inferior parietal cortex, left dorsolateral frontal cortex (BA S), left lateral inferior frontal cortex (BA 10/47), left inferior temporal gyrus @A 20), a strip of medial frontal regions running along a dorsal-ventral axis (BAs 8, 9, 10, and 32), and the right amygdala. Experiments involving language-related processes tended to show larger decreases than nonlanguage experiments. This trend mainly reflected blood flow increases at certain areas in the passive conditions of the language experiments (relative to a fixation control in which no task stimulus was present) and slight blood flow decreases in the passive conditions of the nonlanguage experiments. When the active tasks were referenced to the fixation condition, the overall size of blood flow decreases in language and nonlanguage tasks were the same, but differences were found across cortical areas. Decreases were more pronounced in the posterior cingulate/precuneous (BAS 31/7) and right inferior parietal cortex (BA 40) during language-related tasks and more pronounced in left inferior frontal cortex (BA 10/47) during nonlanguage tasks. Blood flow decreases did not generally show significant differences across the active task states within an experiment, but a verb-generation task produced larger decreases than a read task in right and left inferior parietal lobe (BA 40) and the posterior cingulate/precuneous (BA 31/7), while the read task produced larger decreases in left lateral inferior frontal cortex (BA 10/47). These effects mirrored those found between experiments in the language-nonlanguage comparison. Consistent active minus passive decreases may reflect decreased activity caused by active task processes that generalize over tasks or increased activity caused by passive task processes that are suspended during the active tasks. Increased activity during the passive condition might reflect ongoing processes, such as unconstrained verbally mediated thoughts and monitoring of the external environment, body, and emotional state.


Nature | 2007

Intrinsic functional architecture in the anaesthetized monkey brain.

Justin L. Vincent; Gaurav H. Patel; Michael D. Fox; Avi Snyder; Justin T. Baker; D. C. Van Essen; John M. Zempel; Lawrence H. Snyder; Maurizio Corbetta; Marcus E. Raichle

The traditional approach to studying brain function is to measure physiological responses to controlled sensory, motor and cognitive paradigms. However, most of the brain’s energy consumption is devoted to ongoing metabolic activity not clearly associated with any particular stimulus or behaviour. Functional magnetic resonance imaging studies in humans aimed at understanding this ongoing activity have shown that spontaneous fluctuations of the blood-oxygen-level-dependent signal occur continuously in the resting state. In humans, these fluctuations are temporally coherent within widely distributed cortical systems that recapitulate the functional architecture of responses evoked by experimentally administered tasks. Here, we show that the same phenomenon is present in anaesthetized monkeys even at anaesthetic levels known to induce profound loss of consciousness. We specifically demonstrate coherent spontaneous fluctuations within three well known systems (oculomotor, somatomotor and visual) and the ‘default’ system, a set of brain regions thought by some to support uniquely human capabilities. Our results indicate that coherent system fluctuations probably reflect an evolutionarily conserved aspect of brain functional organization that transcends levels of consciousness.


Neuron | 1998

A Common Network of Functional Areas for Attention and Eye Movements

Maurizio Corbetta; Erbil Akbudak; Thomas E. Conturo; Abraham Z. Snyder; John M. Ollinger; Heather A. Drury; Martin R Linenweber; Steven E. Petersen; Marcus E. Raichle; David C. Van Essen; Gordon L. Shulman

Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.


NeuroImage | 2013

Dynamic functional connectivity: promise, issues, and interpretations.

R. Matthew Hutchison; Thilo Womelsdorf; Elena A. Allen; Peter A. Bandettini; Vince D. Calhoun; Maurizio Corbetta; Stefania Della Penna; Jeff H. Duyn; Gary H. Glover; Javier Gonzalez-Castillo; Daniel A. Handwerker; Shella D. Keilholz; Vesa Kiviniemi; David A. Leopold; Francesco de Pasquale; Olaf Sporns; Martin Walter; Catie Chang

The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations.


Neuron | 2007

Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect

Biyu J. He; Abraham Z. Snyder; Justin L. Vincent; Adrian A. Epstein; Gordon L. Shulman; Maurizio Corbetta

Spatial neglect is a syndrome following stroke manifesting attentional deficits in perceiving and responding to stimuli in the contralesional field. We examined brain network integrity in patients with neglect by measuring coherent fluctuations of fMRI signals (functional connectivity). Connectivity in two largely separate attention networks located in dorsal and ventral frontoparietal areas was assessed at both acute and chronic stages of recovery. Connectivity in the ventral network, part of which directly lesioned, was diffusely disrupted and showed no recovery. In the structurally intact dorsal network, interhemispheric connectivity in posterior parietal cortex was acutely disrupted but fully recovered. This acute disruption, and disrupted connectivity in specific pathways in the ventral network, strongly correlated with impaired attentional processing across subjects. Lastly, disconnection of the white matter tracts connecting frontal and parietal cortices was associated with more severe neglect and more disrupted functional connectivity. These findings support a network view in understanding neglect.


NeuroImage | 2012

The Human Connectome Project: A data acquisition perspective

D. C. Van Essen; Kamil Ugurbil; Edward J. Auerbach; Timothy E. J. Behrens; Richard D. Bucholz; A. Chang; Liyong Chen; Maurizio Corbetta; Sandra W. Curtiss; S. Della Penna; David A. Feinberg; Matthew F. Glasser; Noam Harel; A. C. Heath; Linda J. Larson-Prior; Daniel S. Marcus; G. Michalareas; Steen Moeller; Robert Oostenveld; S.E. Petersen; Fred W. Prior; Bradley L. Schlaggar; Stephen M. Smith; Avi Snyder; Junqian Xu; Essa Yacoub

The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain connectivity and function and their variability in healthy adults. This review summarizes the data acquisition plans being implemented by a consortium of HCP investigators who will study a population of 1200 subjects (twins and their non-twin siblings) using multiple imaging modalities along with extensive behavioral and genetic data. The imaging modalities will include diffusion imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked fMRI (T-fMRI), T1- and T2-weighted MRI for structural and myelin mapping, plus combined magnetoencephalography and electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine and optimize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T scanner, and improved MR pulse sequences.


Nature Neuroscience | 2005

Neural basis and recovery of spatial attention deficits in spatial neglect.

Maurizio Corbetta; Michelle Kincade; C. Lewis; Abraham Z. Snyder; Ayelet Sapir

The syndrome of spatial neglect is typically associated with focal injury to the temporoparietal or ventral frontal cortex. This syndrome shows spontaneous partial recovery, but the neural basis of both spatial neglect and its recovery is largely unknown. We show that spatial attention deficits in neglect (rightward bias and reorienting) after right frontal damage correlate with abnormal activation of structurally intact dorsal and ventral parietal regions that mediate related attentional operations in the normal brain. Furthermore, recovery of these attention deficits correlates with the restoration and rebalancing of activity within these regions. These results support a model of recovery based on the re-weighting of activity within a distributed neuronal architecture, and they show that behavioral deficits depend not only on structural changes at the locus of injury, but also on physiological changes in distant but functionally related brain areas.


Annual Review of Neuroscience | 2011

Spatial neglect and attention networks.

Maurizio Corbetta; Gordon L. Shulman

Unilateral spatial neglect is a common neurological syndrome following predominantly right hemisphere injuries and is characterized by both spatial and non-spatial deficits. Core spatial deficits involve mechanisms for saliency coding, spatial attention, and short-term memory and occur in conjunction with nonspatial deficits that involve reorienting, target detection, and arousal/vigilance. We argue that neglect is better explained by the dysfunction of distributed cortical networks for the control of attention than by structural damage of specific brain regions. Ventral lesions in right parietal, temporal, and frontal cortex that cause neglect directly impair nonspatial functions partly mediated by a ventral frontoparietal attention network. Structural damage in ventral cortex also induces physiological abnormalities of task-evoked activity and functional connectivity in a dorsal frontoparietal network that controls spatial attention. The anatomy and right hemisphere dominance of neglect follow from the anatomy and laterality of the ventral regions that interact with the dorsal attention network.


Journal of Cognitive Neuroscience | 2002

Neural Systems for Visual Orienting and Their Relationships to Spatial Working Memory

Maurizio Corbetta; J. Michelle Kincade; Gordon L. Shulman

We investigated neural correlates of human visual orienting using event-related functional magnetic resonance imaging (fMRI). When subjects voluntarily directed attention to a peripheral location, we recorded robust and sustained signals uniquely from the intraparietal sulcus (IPs) and superior frontal cortex (near the frontal eye field, FEF). In the ventral IPs and FEF only, the blood oxygen level dependent signal was modulated by the direction of attention. The IPs and FEF also maintained the most sustained level of activation during a 7-sec delay, when subjects maintained attention at the peripheral cued location (working memory). Therefore, the IPs and FEF form a dorsal network that controls the endogenous allocation and maintenance of visuospatial attention. A separate right hemisphere network was activated by the detection of targets at unattended locations. Activation was largely independent of the targets location (visual field). This network included among other regions the right temporo-parietal junction and the inferior frontal gyrus. We propose that this cortical network is important for reorienting to sensory events.

Collaboration


Dive into the Maurizio Corbetta's collaboration.

Top Co-Authors

Avatar

Gordon L. Shulman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Abraham Z. Snyder

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gian Luca Romani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Dante Mantini

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Serguei V. Astafiev

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Marcus E. Raichle

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Carlo Sestieri

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Steven E. Petersen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Antonello Baldassarre

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Francis M. Miezin

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge