Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maurizio Di Liberto is active.

Publication


Featured researches published by Maurizio Di Liberto.


Cancer Research | 2006

A Novel Orally Active Small Molecule Potently Induces G1 Arrest in Primary Myeloma Cells and Prevents Tumor Growth by Specific Inhibition of Cyclin-Dependent Kinase 4/6

Linda B. Baughn; Maurizio Di Liberto; Kaida Wu; Peter L. Toogood; Tracey Louie; Rachel Gottschalk; Ruben Niesvizky; Hearn Cho; Scott Ely; Malcolm A. S. Moore; Selina Chen-Kiang

Cell cycle deregulation is central to the initiation and fatality of multiple myeloma, the second most common hematopoietic cancer, although impaired apoptosis plays a critical role in the accumulation of myeloma cells in the bone marrow. The mechanism for intermittent, unrestrained proliferation of myeloma cells is unknown, but mutually exclusive activation of cyclin-dependent kinase 4 (Cdk4)-cyclin D1 or Cdk6-cyclin D2 precedes proliferation of bone marrow myeloma cells in vivo. Here, we show that by specific inhibition of Cdk4/6, the orally active small-molecule PD 0332991 potently induces G(1) arrest in primary bone marrow myeloma cells ex vivo and prevents tumor growth in disseminated human myeloma xenografts. PD 0332991 inhibits Cdk4/6 proportional to the cycling status of the cells independent of cellular transformation and acts in concert with the physiologic Cdk4/6 inhibitor p18(INK4c). Inhibition of Cdk4/6 by PD 0332991 is not accompanied by induction of apoptosis. However, when used in combination with a second agent, such as dexamethasone, PD 0332991 markedly enhances the killing of myeloma cells by dexamethasone. PD 0332991, therefore, represents the first promising and specific inhibitor for therapeutic targeting of Cdk4/6 in multiple myeloma and possibly other B-cell cancers.


Cancer Discovery | 2014

Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma.

David Chiron; Maurizio Di Liberto; Peter Martin; Xiangao Huang; Jeff P. Sharman; Pedro Blecua; Susan Mathew; Priyanka Vijay; Ken Eng; Siraj M. Ali; Amy J. Johnson; Betty Y. Chang; Scott Ely; Olivier Elemento; Christopher E. Mason; John P. Leonard; Selina Chen-Kiang

UNLABELLED Despite the unprecedented clinical activity of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib in mantle cell lymphoma (MCL), acquired resistance is common. By longitudinal integrative whole-exome and whole-transcriptome sequencing and targeted sequencing, we identified the first relapse-specific C481S mutation at the ibrutinib binding site of BTK in MCL cells at progression following a durable response. This mutation enhanced BTK and AKT activation and tissue-specific proliferation of resistant MCL cells driven by CDK4 activation. It was absent, however, in patients with primary resistance or progression following transient response to ibrutinib, suggesting alternative mechanisms of resistance. Through synergistic induction of PIK3IP1 and inhibition of PI3K-AKT activation, prolonged early G1 arrest induced by PD 0332991 (palbociclib) inhibition of CDK4 sensitized resistant lymphoma cells to ibrutinib killing when BTK was unmutated, and to PI3K inhibitors independent of C481S mutation. These data identify a genomic basis for acquired ibrutinib resistance in MCL and suggest a strategy to override both primary and acquired ibrutinib resistance. SIGNIFICANCE We have discovered the first relapse-specific BTK mutation in patients with MCL with acquired resistance, but not primary resistance, to ibrutinib, and demonstrated a rationale for targeting the proliferative resistant MCL cells by inhibiting CDK4 and the cell cycle in combination with ibrutinib in the presence of BTK(WT) or a PI3K inhibitor independent of BTK mutation. As drug resistance remains a major challenge and CDK4 and PI3K are dysregulated at a high frequency in human cancers, targeting CDK4 in genome-based combination therapy represents a novel approach to lymphoma and cancer therapy. Cancer Discov; 4(9); 1022-35. ©2014 AACR. This article is highlighted in the In This Issue feature, p. 973.


Cancer Research | 2008

A Novel Therapeutic Combination Using PD 0332991 and Bortezomib: Study in the 5T33MM Myeloma Model

Eline Menu; Josefina Garcia; Xiangao Huang; Maurizio Di Liberto; Peter L. Toogood; Isan Chen; Karin Vanderkerken; Selina Chen-Kiang

Multiple myeloma (MM) remains incurable partly because no effective cell cycle-based therapy has been available to both control tumor cell proliferation and synergize with cytotoxic killing. PD 0332991 is an orally active small molecule that potently and specifically inhibits Cdk4 and Cdk6. It has been shown to induce rapid G(1) cell cycle arrest in primary human myeloma cells and suppress tumor growth in xenograft models. To improve therapeutic targeting of myeloma progression, we combined tumor suppression by PD 0332991 with cytotoxic killing by bortezomib, a proteasome inhibitor widely used in myeloma treatment, in the immunocompetent 5T33MM myeloma model. We show that 5T33MM tumor cells proliferate aggressively in vivo due to expression of cyclin D2, elevation of Cdk4, and impaired p27(Kip1) expression, despite inhibition of Cdk4/6 by p18(INK4c) and the maintenance of a normal plasma cell transcription program. PD 0332991 potently inhibits Cdk4/6-specific phosphorylation of Rb and cell cycle progression through G(1) in aggressively proliferating primary 5T33MM cells, in vivo and ex vivo. This leads to tumor suppression and a significant improvement in survival. Moreover, induction of G(1) arrest by PD 0332991 sensitizes 5T33MM tumor cells to killing by bortezomib. Inhibition of Cdk4/6 by PD 0332991, therefore, effectively controls myeloma tumor expansion and sensitizes tumor cells to bortezomib killing in the presence of an intact immune system, thereby representing a novel and promising cell cycle-based combination therapy.


Cancer Research | 2005

Mutually Exclusive Cyclin-Dependent Kinase 4/Cyclin D1 and Cyclin-Dependent Kinase 6/Cyclin D2 Pairing Inactivates Retinoblastoma Protein and Promotes Cell Cycle Dysregulation in Multiple Myeloma

Scott Ely; Maurizio Di Liberto; Ruben Niesvizky; Linda B. Baughn; Hearn J. Cho; Eunice N. Hatada; Daniel M. Knowles; Joseph M. Lane; Selina Chen-Kiang

Multiple myeloma, the second most common hematopoietic cancer, ultimately becomes refractory to treatment when self-renewing multiple myeloma cells begin unrestrained proliferation by unknown mechanisms. Here, we show that one, but not more than one, of the three early G(1) D cyclins is elevated in each case of multiple myeloma. Cyclin D1 or D3 expression does not vary in the clinical course, but that alone is insufficient to promote cell cycle progression unless cyclin-dependent kinase 4 (cdk4) is also elevated, in the absence of cdk6, to phosphorylate the retinoblastoma protein (Rb). By contrast, cyclin D2 and cdk6 are coordinately increased, thereby overriding the inhibition by cdk inhibitors p18(INK4c) and p27(Kip1) and phosphorylating Rb in conjunction with the existing cdk4. Thus, cyclin D1 pairs exclusively with cdk4 and cdk6 pairs only with cyclin D2, although cyclin D2 can also pair with cdk4 in multiple myeloma cells. The basis for this novel and specific cdk/D cyclin pairing lies in differential transcriptional activation. In addition, cyclin D1- or cyclin D3-expressing multiple myeloma cells are uniformly distributed in the bone marrow, whereas cdk6-specific phosphorylation of Rb occurs in discrete foci of bone marrow multiple myeloma cells before proliferation early in the clinical course and is then heightened with proliferation and disease progression. Mutually exclusive cdk4/cyclin D1 and cdk6/cyclin D2 pairing, therefore, is likely to be a critical determinant for cell cycle reentry and progression and may play a pivotal role in the expansion of self-renewing multiple myeloma cells.


Blood | 2012

Prolonged early G1 arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle–coupled loss of IRF4

Xiangao Huang; Maurizio Di Liberto; David Jayabalan; Jun Liang; Scott Ely; Jamieson Bretz; Arthur L. Shaffer; Tracey Louie; Isan Chen; Sophia Randolph; William C. Hahn; Louis M. Staudt; Ruben Niesvizky; Malcolm A. Moore; Selina Chen-Kiang

Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.


Cell Cycle | 2013

Induction of prolonged early G1 arrest by CDK4/CDK6 inhibition reprograms lymphoma cells for durable PI3Kδ inhibition through PIK3IP1

David Chiron; Peter Martin; Maurizio Di Liberto; Xiangao Huang; Scott Ely; Brian Joseph Lannutti; John P. Leonard; Christopher E. Mason; Selina Chen-Kiang

Phosphatidylinositol-3-kinase (PI3K) signaling is constitutive in most human cancers. Selective inhibition of PI3Kδ (p110δ) by GS-1101 has emerged as a promising therapy in chronic lymphocytic leukemia and indolent lymphomas. In aggressive non-Hodgkin lymphomas such as mantle cell lymphoma (MCL), however, efficacy has been observed, but the extent and duration of tumor control is modest. To determine if tumor killing by GS-1101 is cell cycle-dependent, we show in primary MCL cells by whole-transcriptome sequencing that, despite aberrant expression and recurrent mutations in Cyclin D1, mutations are rare in coding regions of CDK4, RB1 and other genes that control G1-S cell cycle progression or PI3K/AKT signaling. PI3Kδ is the predominant PI3K catalytic subunit expressed, and inhibition by GS-1101 transiently inhibits AKT phosphorylation but not proliferation in MCL cells. Induction of prolonged early G1-arrest (pG1) by selective inhibition of CDK4/CDK6 with PD 0332991 amplifies and sustains PI3Kδ inhibition, which leads to robust apoptosis. Accordingly, inhibition of PI3Kδ induces apoptosis of primary MCL tumor cells once they have ceased to cycle ex vivo, and this killing is enhanced by PD 0332991 inhibition of CDK4/CDK6. PIK3IP1, a negative PI3K regulator, appears to mediate pG1 sensitization to PI3K inhibition; it is markedly reduced in MCL tumor cells compared with normal peripheral B cells, profoundly induced in pG1 and required for pG1 sensitization to GS-1101. Thus, the magnitude and duration of PI3K inhibition and tumor killing by GS-1101 is pG1-dependent, suggesting induction of pG1 by CDK4/CDK6 inhibition as a strategy to sensitize proliferating lymphoma cells to PI3K inhibition.


Journal of Immunology | 2009

CDK2 Phosphorylation of Smad2 Disrupts TGF-β Transcriptional Regulation in Resistant Primary Bone Marrow Myeloma Cells

Linda B. Baughn; Maurizio Di Liberto; Ruben Niesvizky; Hearn J. Cho; David Jayabalan; Joseph M. Lane; Fang Liu; Selina Chen-Kiang

Resistance to growth suppression by TGF-β1 is common in cancer; however, mutations in this pathway are rare in hematopoietic malignancies. In multiple myeloma, a fatal cancer of plasma cells, malignant cells accumulate in the TGF-β-rich bone marrow due to loss of both cell cycle and apoptotic controls. Herein we show that TGF-β activates Smad2 but fails to induce cell cycle arrest or apoptosis in primary bone marrow myeloma and human myeloma cell lines due to its inability to activate G1 cyclin-dependent kinase (CDK) inhibitors (p15INK4b, p21CIP1/WAF1, p27KIP1, p57KIP2) or to repress c-myc and Bcl-2 transcription. Correlating with aberrant activation of CDKs, CDK-dependent phosphorylation of Smad2 on Thr8 (pT8), a modification linked to impaired Smad activity, is elevated in primary bone marrow myeloma cells, even in asymptomatic monoclonal gammopathy of undetermined significance. Moreover, CDK2 is the predominant CDK that phosphorylates Smad2 on T8 in myeloma cells, leading to inhibition of Smad2-Smad4 association that precludes transcriptional regulation by Smad2. Our findings provide the first direct evidence that pT8 Smad2 couples dysregulation of CDK2 to TGF-β resistance in primary cancer cells, and they suggest that disruption of Smad2 function by CDK2 phosphorylation acts as a mechanism for TGF-β resistance in multiple myeloma.


Leukemia & Lymphoma | 2015

Phase 1/2 study of cyclin-dependent kinase (CDK)4/6 inhibitor palbociclib (PD-0332991) with bortezomib and dexamethasone in relapsed/refractory multiple myeloma

Ruben Niesvizky; Ashraf Badros; Luciano J. Costa; Scott Ely; Seema Singhal; Edward A. Stadtmauer; Nisreen A. Haideri; Abdulraheem Yacoub; Georg Hess; Suzanne Lentzsch; Ivan Spicka; Asher Chanan-Khan; Marc S. Raab; Stefano Tarantolo; Ravi Vij; Jeffrey A. Zonder; Xiangao Huang; David Jayabalan; Maurizio Di Liberto; Xin Huang; Yuqiu Jiang; Sindy T. Kim; Sophia Randolph; Selina Chen-Kiang

This phase 1/2 study was the first to evaluate the safety and efficacy of the cyclin-dependent kinase (CDK) 4/6–specific inhibitor palbociclib (PD-0332991) in sequential combination with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. The recommended phase 2 dose was palbociclib 100 mg orally once daily on days 1–12 of a 21-day cycle with bortezomib 1.0 mg/m2 (intravenous) and dexamethasone 20 mg (orally 30 min pre-bortezomib dosing) on days 8 and 11 (early G1 arrest) and days 15 and 18 (cell cycle resumed). Dose-limiting toxicities were primarily cytopenias; most other treatment-related adverse events were grade ≤ 3. At a bortezomib dose lower than that in other combination therapy studies, antitumor activity was observed (phase 1). In phase 2, objective responses were achieved in 5 (20%) patients; 11 (44%) achieved stable disease. Biomarker and pharmacodynamic assessments demonstrated that palbociclib inhibited CDK4/6 and the cell cycle initially in most patients.


Journal of Biological Chemistry | 2005

Concerted auto-regulation in yeast endosomal t-SNAREs.

Fabienne Paumet; Vahid Rahimian; Maurizio Di Liberto

In yeast, the assembly of the target (t)-SNAREs [Tlg2p/Tlg1p,Vti1p] and [Pep12p/Tlg1p,Vti1p] with the vesicular (v)-SNARE Snc2p promotes endocytic fusion. Here, selected mutations and truncations of SNARE proteins were tested in an in vitro fusion assay to identify potential regulatory regions in these proteins, and two distinct regions were found. The first is represented by the combined effect of the three t-SNARE N-terminal regions and the second is located within the Tlg1p SNARE motif. These internal controls provide a potential mechanism to enable SNARE-dependent fusion to be regulated.


Nature Communications | 2017

Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma

Xiaohong Zhao; Tint Lwin; Ariosto S. Silva; Bijal D. Shah; Jiangchuan Tao; Bin Fang; Liang Zhang; Kai Fu; Chengfeng Bi; Jiannong Li; Huijuan Jiang; Mark B. Meads; Timothy Jacobson; Maria Silva; Allison Distler; Lancia N. F. Darville; Ling Zhang; Ying Han; Dmitri Rebatchouk; Maurizio Di Liberto; Lynn C. Moscinski; John M. Koomen; William S. Dalton; Kenneth H. Shain; Michael Wang; Eduardo M. Sotomayor; Jianguo Tao

The novel Brutons tyrosine kinase inhibitor ibrutinib has demonstrated high response rates in B-cell lymphomas; however, a growing number of ibrutinib-treated patients relapse with resistance and fulminant progression. Using chemical proteomics and an organotypic cell-based drug screening assay, we determine the functional role of the tumour microenvironment (TME) in ibrutinib activity and acquired ibrutinib resistance. We demonstrate that MCL cells develop ibrutinib resistance through evolutionary processes driven by dynamic feedback between MCL cells and TME, leading to kinome adaptive reprogramming, bypassing the effect of ibrutinib and reciprocal activation of PI3K-AKT-mTOR and integrin-β1 signalling. Combinatorial disruption of B-cell receptor signalling and PI3K-AKT-mTOR axis leads to release of MCL cells from TME, reversal of drug resistance and enhanced anti-MCL activity in MCL patient samples and patient-derived xenograft models. This study unifies TME-mediated de novo and acquired drug resistance mechanisms and provides a novel combination therapeutic strategy against MCL and other B-cell malignancies.

Collaboration


Dive into the Maurizio Di Liberto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge