Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maurizio Forte is active.

Publication


Featured researches published by Maurizio Forte.


Food and Chemical Toxicology | 2013

Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases

Albino Carrizzo; Maurizio Forte; Antonio Damato; Valentina Trimarco; Francesco A. Salzano; Michelangelo Bartolo; Anna Maciag; Annibale Alessandro Puca; Carmine Vecchione

Resveratrol-a natural polyphenolic compound-was first discovered in the 1940s. Although initially used for cancer therapy, it has shown beneficial effects against most cardiovascular and cerebrovascular diseases. A large part of these effects are related to its antioxidant properties. Here we review: (a) the sources, the metabolism, and the bioavailability of resveratrol; (b) the ability of resveratrol to modulate redox signalling and to interact with multiple molecular targets of diverse intracellular pathways; (c) its protective effects against oxidative damage in cardio-cerebro-vascular districts and metabolic disorders such as diabetes; and (d) the evidence for its efficacy and toxicity in humans. The overall aim of this review is to discuss the frontiers in the field of resveratrols mechanisms, bioactivity, biology, and health-related use.


European Journal of Pharmaceutics and Biopharmaceutics | 2015

Curcumin loaded PLGA–poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells

Laura Mayol; Carla Serri; Ciro Menale; Stefania Crispi; Maria Teresa Piccolo; Luigi Mita; Simona Giarra; Maurizio Forte; A. Saija; Marco Biondi; Damiano Gustavo Mita

The pharmacological potential of curcumin (CURC) is severely restricted because of its low water solubility/absorption, short half-life and poor bioavailability. To overcome these issues, CURC-loaded nanoparticles (NPs) were produced by a double emulsion technique. In particular, NPs were made up of an amphiphilic blend of poloxamers and PLGA to confer stealth properties to the NPs to take advantage of the enhanced permeability and retention (EPR) effect. Different surface properties of NPs made up of bare PLGA and PLGA/poloxamer blend were confirmed by the different interactions of these NPs with serum proteins and also by their ability to be internalized by mesothelioma cell line. The uptake of PLGA/poloxamer NPs induces a persistent block in G0/G1 phase of the cell cycle up to 72 h, thus overcoming the drug tolerance phenomenon, normally evidenced with free CURC.


Current Drug Targets | 2014

Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases.

Albino Carrizzo; Maurizio Forte; Maria Lembo; Luigi Formisano; Annibale Alessandro Puca; Carmine Vecchione

Growing evidence indicates that overproduction of reactive oxygen species (ROS) plays a prominent role in the development of cardio- and cerebro-vascular diseases. Among the mechanisms identified to produce oxidative stress in the vascular wall, those mediated by membrane-bound NAD(P)H oxidases represent a major one. NAD(P)H oxidases are a family of enzymes that generate ROS both in phagocytic and non-phagocytic cell types. Vascular NAD(P)H oxidase contains the membrane-bound subunits Nox1, Nox2 (gp91phox), Nox4 and p22phox, the catalytic site of the oxidase, and the cytosolic components p47phox and p67phox. Rac1 (Ras-related C3 botulinum toxin substrate1) is a small GTPase essential for the assembly and activation of NADPH oxidase. Several molecular and cellular studies have reported the involvement of Rac1 in different cardiovascular pathologies, such as vascular smooth muscle proliferation, cardiomyocyte hypertrophy, endothelial cell shape change, atherosclerosis and endothelial dysfunction in hypertension. In addition, increased activation of NADPH oxidase by Rac1 has been reported in animals and humans after myocardial infarction and heart failure. The Rac1/NADPH pathway has also been found involved in different pathologies of the cerebral district, such as ischemic stroke, cognitive impairment, subaracnoid hemorrhage and neuronal oxidative damage typical of several neurodegenerative disorders. In addition, thrombotic events are an important step in the onset of cardio- and cerebrovascular diseases. Rac1 has been found involved also in platelet activation, inducing actin polymerization and lamellipodia formation, which are necessary steps for platelet aggregation. Taken together, the evidence candidates Rac1 as a new pharmacological target of cardiovascular and cerebrovascular diseases. Although the involvement of Rac1 in the beneficial pleiotropic effects of drugs such as statins is well known, and the onset of numerous side effects has raised concern for the management of some patient groups. Interestingly, a novel selective Rac1 inhibitor, NSC23766, has recently been introduced; its use has been reported mainly in the oncology field. Future studies are needed to extend its application to cardio- and cerebro-vascular diseases, and translate its use to humans.


Oxidative Medicine and Cellular Longevity | 2017

A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling

Leonardo Schirone; Maurizio Forte; Silvia Palmerio; Derek Yee; Cristina Nocella; Francesco Angelini; Francesca Pagano; Sonia Schiavon; Antonella Bordin; Albino Carrizzo; Carmine Vecchione; Valentina Valenti; Isotta Chimenti; Elena De Falco; Sebastiano Sciarretta; Giacomo Frati

Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling.


Immunity & Ageing | 2016

The inflammatory protein Pentraxin 3 in cardiovascular disease

Francesco Fornai; Albino Carrizzo; Maurizio Forte; Mariateresa Ambrosio; Antonio Damato; Michela Ferrucci; Francesca Biagioni; Carla L. Busceti; Annibale Alessandro Puca; Carmine Vecchione

The acute phase protein Pentraxin 3 (PTX3) plays a non-redundant role as a soluble pattern recognition receptor for selected pathogens and it represents a rapid biomarker for primary local activation of innate immunity and inflammation. Recent evidence indicates that PTX3 exerts an important role in modulating the cardiovascular system in humans and experimental models. In particular, there are conflicting points concerning the effects of PTX3 in cardiovascular diseases (CVD) since several observations indicate a cardiovascular protective effect of PTX3 while others speculate that the increased plasma levels of PTX3 in subjects with CVD correlate with disease severity and with poor prognosis in elderly patients.In the present review, we discuss the multifaceted effects of PTX3 on the cardiovascular system focusing on its involvement in atherosclerosis, endothelial function, hypertension, myocardial infarction and angiogenesis. This may help to explain how the specific modulation of PTX3 such as the use of different dosing, time, and target organs could help to contain different vascular diseases. These opposite actions of PTX3 will be emphasized concerning the modulation of cardiovascular system where potential therapeutic implications of PTX3 in humans are discussed.


Oxidative Medicine and Cellular Longevity | 2016

Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases.

Maurizio Forte; Valeria Conti; Antonio Damato; Mariateresa Ambrosio; Annibale Alessandro Puca; Sebastiano Sciarretta; Giacomo Frati; Carmine Vecchione; Albino Carrizzo

Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.


Current Drug Targets | 2017

Sirtuins: Possible Clinical Implications in Cardio and Cerebrovascular Diseases

Valeria Conti; Maurizio Forte; Graziamaria Corbi; Giusy Russomanno; Luigi Formisano; Alessandro Landolfi; Viviana Izzo; Amelia Filippelli; Carmine Vecchione; Albino Carrizzo

Mammalian sirtuins (SIRT1-7) are NAD+-dependent deacetylases, which play an important role in aging and in a wide range of cellular functions. SIRT1, the best-characterized member of the family, acts as a sensor of the redox state and triggers in the cell the appropriate defense response. A large body of evidence has showed that SIRT1 induces both cellular and systemic protective effects in the cardiovascular system by preventing stress-induced apoptosis and senescence, and mitigating endothelial dysfunction. Hence, SIRT1 is now foreseen as a potential therapeutic target for a growing number of cardiovascular diseases. Recently, it has been suggested that SIRT1 activation could also be considered as a neuroprotective strategy. Indeed, SIRT1 protects against ischemia/reperfusion injury both in vitro and in vivo and avoids severe ischemic damage by preserving cerebral blood flow. In the last years it was suggested that others sirtuins, in particular SIRT3 and SIRT6, could exert beneficial effects in vascular syndromes. The aim of this review was to describe and discuss recent experimental evidence on the effects of SIRT1 and other sirtuins on the pathophysiology of cardio- and cerebrovascular diseases, underlying a potential therapeutic effect of these enzymes in the treatment and/or prevention of such conditions.


Frontiers in Environmental Science | 2015

Estrogenic and anti-androgenic endocrine disrupting chemicals and their impact on the male reproductive system

Maria De Falco; Maurizio Forte; Vincenza Laforgia

Endocrine disrupting chemicals (EDCs) are identified for their ability to perturb the homeostasis of endocrine system and hormonal balance. The male reproductive system is under close control of hormones and each change in their concentration and time of exposition and action can induce a deregulation of its physiology. In this review we summarize the most recent studies on two main categories of EDCs with different action: the estrogenic bisphenol A and alkylphenols and the anti-androgenic phthalates. This review describes the main effects of these substances on male reproductive system.


Toxicology in Vitro | 2016

Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells.

Maurizio Forte; Margherita Tussellino; Rosa Carotenuto; Marina Prisco; Maria De Falco; Vincenza Laforgia; Salvatore Valiante

The increase in the use of nanoparticles, as a promising tool for drug delivery or as a food additive, raises questions about their interaction with biological systems, especially in terms of evoked responses. In this work, we evaluated the kinetics of uptake of 44 nm (NP44) and 100 nm (NP100) unmodified polystyrene nanoparticles (PS-NPs) in gastric adenocarcinoma (AGS) cells, as well as the endocytic mechanism involved, and the effect on cell viability and gene expression of genes involved in cell cycle regulation and inflammation processes. We showed that NP44 accumulate rapidly and more efficiently in the cytoplasm of AGS compared to NP100; both PS-NPs showed an energy dependent mechanism of internalization and a clathrin-mediated endocytosis pathway. Dose response treatments revealed a non-linear curve. PS-NPs also affected cell viability, inflammatory gene expression and cell morphology. NP44 strongly induced an up-regulation of IL-6 and IL-8 genes, two of the most important cytokines involved in gastric pathologies. Our study suggests that parameters such as time, size and concentration of NPs must be taken carefully into consideration during the development of drug delivery systems based on NPs and for the management of nanoparticles associated risk factors.


Molecular and Cellular Endocrinology | 2016

Triclosan and bisphenol a affect decidualization of human endometrial stromal cells.

Maurizio Forte; Luigi Mita; Luigi Cobellis; Verdiana Merafina; Raffaella Specchio; Sergio Rossi; Damiano Gustavo Mita; Lavinia Mosca; Maria Antonietta Castaldi; Maria De Falco; Vincenza Laforgia; Stefania Crispi

In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome.

Collaboration


Dive into the Maurizio Forte's collaboration.

Top Co-Authors

Avatar

Maria De Falco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Vincenza Laforgia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Valiante

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giacomo Frati

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Speranza Rubattu

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Massimo Volpe

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Damiano Gustavo Mita

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Luigi Mita

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge