Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maurizio Giustetto is active.

Publication


Featured researches published by Maurizio Giustetto.


Science | 2011

Synaptic pruning by microglia is necessary for normal brain development.

Rosa C. Paolicelli; Giulia Bolasco; Francesca Pagani; Laura Maggi; Maria Scianni; Patrizia Panzanelli; Maurizio Giustetto; Tiago A. Ferreira; Eva Guiducci; Laura Dumas; Davide Ragozzino; Cornelius Gross

A good brain needs a good vacuum cleaner. Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice. These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.


Cell | 1999

A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis.

Andrea Casadio; Kelsey C. Martin; Maurizio Giustetto; Huixiang Zhu; Mary Chen; Dusan Bartsch; Craig H. Bailey; Eric R. Kandel

In a culture system where a bifurcated Aplysia sensory neuron makes synapses with two motor neurons, repeated application of serotonin (5-HT) to one synapse produces a CREB-mediated, synapse-specific, long-term facilitation, which can be captured at the opposite synapse by a single pulse of 5-HT. Repeated pulses of 5-HT applied to the cell body of the sensory neuron produce a CREB-dependent, cell-wide facilitation, which, unlike synapse-specific facilitation, is not associated with growth and does not persist beyond 48 hr. Persistent facilitation and synapse-specific growth can be induced by a single pulse of 5-HT applied to a peripheral synapse. Thus, the short-term process initiated by a single pulse of 5-HT serves not only to produce transient facilitation, but also to mark and stabilize any synapse of the neuron for long-term facilitation by means of a covalent mark and rapamycin-sensitive local protein synthesis.


Cell | 2002

Integration of Long-Term-Memory-Related Synaptic Plasticity Involves Bidirectional Regulation of Gene Expression and Chromatin Structure

Zhonghui Guan; Maurizio Giustetto; Stavros Lomvardas; Joung-Hun Kim; Maria Concetta Miniaci; James H. Schwartz; Dimitris Thanos; Eric R. Kandel

Excitatory and inhibitory inputs converge on single neurons and are integrated into a coherent output. Although much is known about short-term integration, little is known about how neurons sum opposing signals for long-term synaptic plasticity and memory storage. In Aplysia, we find that when a sensory neuron simultaneously receives inputs from the facilitatory transmitter 5-HT at one set of synapses and the inhibitory transmitter FMRFamide at another, long-term facilitation is blocked and synapse-specific long-term depression dominates. Chromatin immunoprecipitation assays show that 5-HT induces the downstream gene C/EBP by activating CREB1, which recruits CBP for histone acetylation, whereas FMRFa leads to CREB1 displacement by CREB2 and recruitment of HDAC5 to deacetylate histones. When the two transmitters are applied together, facilitation is blocked because CREB2 and HDAC5 displace CREB1-CBP, thereby deacetylating histones.


Cell | 2003

A Neuronal Isoform of CPEB Regulates Local Protein Synthesis and Stabilizes Synapse-Specific Long-Term Facilitation in Aplysia

Kausik Si; Maurizio Giustetto; Amit Etkin; Ruby Hsu; Agnieszka M. Janisiewicz; Maria Conchetta Miniaci; Joung-Hun Kim; Huixiang Zhu; Eric R. Kandel

Synapse-specific facilitation requires rapamycin-dependent local protein synthesis at the activated synapse. In Aplysia, rapamycin-dependent local protein synthesis serves two functions: (1) it provides a component of the mark at the activated synapse and thereby confers synapse specificity and (2) it stabilizes the synaptic growth associated with long-term facilitation. Here we report that a neuron-specific isoform of cytoplasmic polyadenylation element binding protein (CPEB) regulates this synaptic protein synthesis in an activity-dependent manner. Aplysia CPEB protein is upregulated locally at activated synapses, and it is needed not for the initiation but for the stable maintenance of long-term facilitation. We suggest that Aplysia CPEB is one of the stabilizing components of the synaptic mark.


Nature Reviews Neuroscience | 2000

IS HETEROSYNAPTIC MODULATION ESSENTIAL FOR STABILIZING HEBBIAN PLASTICITY AND MEMORY

Craig H. Bailey; Maurizio Giustetto; Yan-You Huang; Robert D. Hawkins; Eric R. Kandel

In 1894, Ramón y Cajal first proposed that memory is stored as an anatomical change in the strength of neuronal connections. For the following 60 years, little evidence was recruited in support of this idea. This situation changed in the middle of the twentieth century with the development of cellular techniques for the study of synaptic connections and the emergence of new formulations of synaptic plasticity that redefined Ramón y Cajals idea, making it more suitable for testing. These formulations defined two categories of plasticity, referred to as homosynaptic or Hebbian activity-dependent, and heterosynaptic or modulatory input-dependent. Here we suggest that Hebbian mechanisms are used primarily for learning and for short-term memory but often cannot, by themselves, recruit the events required to maintain a long-term memory. In contrast, heterosynaptic plasticity commonly recruits long-term memory mechanisms that lead to transcription and to synaptic growth. When jointly recruited, homosynaptic mechanisms assure that learning is effectively established and heterosynaptic mechanisms ensure that memory is maintained.


Biological Psychiatry | 2010

Early Environmental Enrichment Moderates the Behavioral and Synaptic Phenotype of MeCP2 Null Mice

Giuseppina Lonetti; Andrea Angelucci; Laura Morando; Elena Boggio; Maurizio Giustetto; Tommaso Pizzorusso

BACKGROUND Rett syndrome (RTT) is an X-linked progressive neurodevelopmental disorder characterized by a variety of symptoms including motor abnormalities, mental retardation, anxiety, and autism. Most of RTT cases are caused by mutations of MeCP2. In mice, impaired MeCP2 function results in synaptic deficits associated with motor, cognitive, and emotional alterations. Environmental enrichment (EE) is a rearing condition that enhances synapse formation and plasticity. Previous studies analyzing the effects of postweaning EE found limited effects on motor performance of male MeCP2 mutants. However, EE during early postnatal development produces powerful effects on neural development and plasticity. Thus, we tested whether early EE could ameliorate several phenotypes of male homozygous and female heterozygous MeCP2 mutants. METHODS We investigated the effects of early EE on motor coordination, structural and functional synaptic plasticity, and brain-derived neurotrophic factor expression in male MeCP2 null mice. Anxiety-related behavior and spatial learning was analyzed in heterozygous MeCP2 female mice. RESULTS In male mutants, EE modified excitatory and to a lesser extent inhibitory synaptic density in cerebellum and cortex, reversed the cortical long-term potentiation deficit and augmented cortical brain-derived neurotrophic factor levels. Environmental enrichment also ameliorated motor coordination and motor learning. In female heterozygous mice, a model closely mimicking some aspects of RTT symptoms, EE rescued memory deficits in the Morris water maze and decreased anxiety-related behavior. CONCLUSIONS Early EE dramatically improves several phenotypes of MeCP2 mutants. Thus, environmental factors should be taken into account when analyzing phenotypes of MeCP2 knockout mice, an accepted model of RTT. Early EE might be beneficial in RTT patients.


Human Molecular Genetics | 2011

Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model

Sara Ricciardi; Elena Boggio; Stefano Grosso; Giuseppina Lonetti; Greta Forlani; Gilda Stefanelli; Eleonora Calcagno; Noemi Morello; Nicoletta Landsberger; Stefano Biffo; Tommaso Pizzorusso; Maurizio Giustetto; Vania Broccoli

Rett syndrome (RTT) is a neurodevelopmental disorder with no efficient treatment that is caused in the majority of cases by mutations in the gene methyl-CpG binding-protein 2 (MECP2). RTT becomes manifest after a period of apparently normal development and causes growth deceleration, severe psychomotor impairment and mental retardation. Effective animal models for RTT are available and show morphofunctional abnormalities of synaptic connectivity. However, the molecular consequences of MeCP2 disruption leading to neuronal and synaptic alterations are not known. Protein synthesis regulation via the mammalian target of the rapamycin (mTOR) pathway is crucial for synaptic organization, and its disruption is involved in a number of neurodevelopmental diseases. We investigated the phosphorylation of the ribosomal protein (rp) S6, whose activation is highly dependent from mTOR activity. Immunohistochemistry showed that rpS6 phosphorylation is severely affected in neurons across the cortical areas of Mecp2 mutants and that this alteration precedes the severe symptomatic phase of the disease. Moreover, we found a severe defect of the initiation of protein synthesis in the brain of presymptomatic Mecp2 mutant that was not restricted to a specific subset of transcripts. Finally, we provide evidence for a general dysfunction of the Akt/mTOR, but not extracellular-regulated kinase, signaling associated with the disease progression in mutant brains. Our results indicate that defects in the AKT/mTOR pathway are responsible for the altered translational control in Mecp2 mutant neurons and disclosed a novel putative biomarker of the pathological process. Importantly, this study provides a novel context of therapeutic interventions that can be designed to successfully restrain or ameliorate the development of RTT.


The EMBO Journal | 2010

Learning, AMPA receptor mobility and synaptic plasticity depend on n‐cofilin‐mediated actin dynamics

Marco B. Rust; Christine B. Gurniak; Marianne Renner; Hugo Vara; Laura Morando; Andreas Görlich; Marco Sassoè-Pognetto; Mumna Al Banchaabouchi; Maurizio Giustetto; Antoine Triller; Daniel Choquet; Walter Witke

Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin‐binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n‐cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long‐term potentiation and long‐term depression. Loss of n‐cofilin‐mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n‐cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability.


Disease Models & Mechanisms | 2012

Preclinical research in Rett syndrome: Setting the foundation for translational success

David M. Katz; Joanne Berger-Sweeney; James H. Eubanks; Monica J. Justice; Jeffrey L. Neul; Lucas Pozzo-Miller; Mary E. Blue; Diana Christian; Jacqueline N. Crawley; Maurizio Giustetto; Jacky Guy; C. James Howell; Miriam Kron; Sacha B. Nelson; Rodney C. Samaco; Laura R. Schaevitz; Coryse St Hillaire-Clarke; Juan L. Young; Huda Y. Zoghbi; Laura A. Mamounas

In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists, clinicians and representatives from the National Institutes of Health (NIH), the US Food and Drug Administration (FDA), the pharmaceutical industry and private foundations to assess the state of the art in animal studies of Rett syndrome (RTT). The aim of the workshop was to identify crucial knowledge gaps and to suggest scientific priorities and best practices for the use of animal models in preclinical evaluation of potential new RTT therapeutics. This review summarizes outcomes from the workshop and extensive follow-up discussions among participants, and includes: (1) a comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date, and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies; (2) discussion of the impact of genetic differences among mouse models, and methodological differences among laboratories, on the expression and analysis, respectively, of phenotypic traits; and (3) definitions of the standards that the community of RTT researchers can implement for rigorous preclinical study design and transparent reporting to ensure that decisions to initiate costly clinical trials are grounded in reliable preclinical data.


The EMBO Journal | 2007

Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty‐seeking behavior

Pietro Pilo Boyl; Alessia Di Nardo; Christophe Mulle; Marco Sassoè-Pognetto; Patrizia Panzanelli; Andrea Mele; Matthias Kneussel; Vivian J. A. Costantini; Emerald Perlas; Marzia Massimi; Hugo Vara; Maurizio Giustetto; Walter Witke

Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE‐complex‐mediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty‐seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2‐dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior.

Collaboration


Dive into the Maurizio Giustetto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Boggio

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge