Maurizio Vannoni
European XFEL
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maurizio Vannoni.
Physical Review Letters | 2010
Stefano Lagomarsino; P. Olivero; Federico Bosia; Maurizio Vannoni; S. Calusi; L. Giuntini; M. Massi
We demonstrate the feasibility of fabricating light-waveguiding microstructures in bulk single-crystal diamond by means of direct ion implantation with a scanning microbeam, resulting in the modulation of the refractive index of the ion-beam damaged crystal. Direct evidence of waveguiding through such buried microchannels is obtained with a phase-shift micro-interferometric method allowing the study of the multimodal structure of the propagating electromagnetic field. The possibility of defining optical and photonic structures by direct ion writing opens a range of new possibilities in the design of quantum-optical devices in bulk single-crystal diamond.
Optics Express | 2007
Maurizio Vannoni; Giuseppe Molesini
Absolute planarity measurements by interferometry are classically made using three flats, compared two by two in the course of four or more tests. Data reduction is performed with various analytical methods. Here we present instead a data processing algorithm that converges to solution numerically by iteration. Examples are presented both on synthetic interferograms and on experimental data. High accuracy and versatility of the approach are demonstrated.
Diamond and Related Materials | 2009
P. Olivero; Giampiero Amato; F. Bellotti; O. Budnyk; E. Colombo; M. Jakšić; C. Manfredotti; Ž. Pastuović; F. Picollo; N. Skukan; Maurizio Vannoni; E. Vittone
Abstract We report on a novel method for the fabrication of three-dimensional buried graphitic micropaths in single crystal diamond with the employment of focused MeV ions. The use of implantation masks with graded thickness at the sub-micrometer scale allows the formation of conductive channels which are embedded in the insulating matrix at controllable depths. In particular, the modulation of the channels depth at their endpoints allows the surface contacting of the channel terminations with no need of further fabrication stages. In the present work we describe the sample masking, which includes the deposition of semi-spherical gold contacts on the sample surface, followed by MeV ion implantation. Because of the significant difference between the densities of pristine and amorphous or graphitized diamond, the formation of buried channels has a relevant mechanical effect on the diamond structure, causing localized surface swelling, which has been measured both with interferometric profilometry and atomic force microscopy. The electrical properties of the buried channels are then measured with a two point probe station: clear evidence is given that only the terminal points of the channels are electrically connected with the surface, while the rest of the channels extends below the surface. IV measurements are employed also to qualitatively investigate the electrical properties of the channels as a function of implantation fluence and annealing.
Optics & Photonics News | 2010
Maurizio Vannoni; Andrea Sordini; Giuseppe Molesini
Researchers are once again interested in using non-diffracting beams of light because of the possibility
European Journal of Physics | 2007
Maurizio Vannoni; Samuele Straulino
The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed approach.
Applied Optics | 2008
Maurizio Vannoni; Giuseppe Molesini
Measuring flats in the horizontal posture with interferometers is analyzed in detail, taking into account the sag produced by gravity. A mathematical expression of the bending is provided for a plate supported at three unevenly spaced locations along the edge. It is shown that the azimuthal terms of the deformation can be recovered from a three-flat measuring procedure, while the pure radial terms can only be estimated. The effectiveness of the iterative algorithm for data processing is also demonstrated. Experimental comparison on a set of three flats in horizontal and upright posture is provided.
Optics Express | 2014
Maurizio Vannoni
A method to provide absolute planarity measurements through an interferometric oblique incidence setup and an iterative algorithm is presented. With only three measurements, the calibration of absolute planarity is achieved in a fast and effective manner. Demonstration with synthetic data is provided, and the possible application to very long flat mirrors is pointed out.
Optics Express | 2008
Maurizio Vannoni; Giuseppe Molesini
An iterative algorithm to analyze three-flat test data for absolute planarity measurements is presented. Using the properties of Zernike polynomial representations, results are achieved in a fast and effective manner. Details and demonstrative examples are provided.
Physical Review B | 2013
D. Gatto Monticone; F. Quercioli; R.Mercatelli Rmercatelli; S. Soria; Stefano Borini; T. Poli; Maurizio Vannoni; E. Vittone; P. Olivero
We report on the systematic characterization of photoluminescence (PL) lifetimes in NV- and NV0 centers in 2 MeV H+ implanted type Ib diamond samples by means of a time correlated single photon counting (TCSPC) microscopy technique. A dipole-dipole resonant energy transfer model was applied to interpret the experimental results, allowing a quantitative correlation of the concentration of both native (single substitutional nitrogen atoms) and ion-induced (isolated vacancies) PL-quenching defects with the measured PL lifetimes. The TCSPC measurements were carried out in both frontal (i.e. laser beam probing the main sample surface along the same normal direction of the previously implanted ions) and lateral (i.e. laser beam probing the lateral sample surface orthogonally with respect to the same ion implantation direction) geometries. In particular, the latter geometry allowed a direct probing of the centers lifetime along the strongly nonuniform damage profiles of MeV ions in the crystal. The extrapolation of empirical quasi-exponential decay parameters allowed the systematic estimation of the mean quantum efficiency of the centers as a function of intrinsic and ion-induced defect concentration, which is of direct relevance for the current studies on the use of diamond color centers for photonic applications.
Optics Express | 2012
Stefano Lagomarsino; P. Olivero; S. Calusi; Daniele Gatto Monticone; L. Giuntini; M. Massi; S. Sciortino; Anna Sytchkova; Andrea Sordini; Maurizio Vannoni
An accurate control of the optical properties of single crystal diamond during microfabrication processes such as ion implantation plays a crucial role in the engineering of integrated photonic devices. In this work we present a systematic study of the variation of both real and imaginary parts of the refractive index of single crystal diamond, when damaged with 2 and 3 MeV protons at low-medium fluences (range: 10(15) - 10(17) cm(-2)). After implanting in 125 × 125 μm(2) areas with a scanning ion microbeam, the variation of optical pathlength of the implanted regions was measured with laser interferometric microscopy, while their optical transmission was studied using a spectrometric set-up with micrometric spatial resolution. On the basis of a model taking into account the strongly non-uniform damage profile in the bulk sample, the variation of the complex refractive index as a function of damage density was evaluated.