Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauro C. C. Ribeiro is active.

Publication


Featured researches published by Mauro C. C. Ribeiro.


Journal of Chemical Physics | 2004

Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: A systematic computer simulation study

Sérgio M. Urahata; Mauro C. C. Ribeiro

Molecular dynamics simulations of room temperature molten salts (ionic liquids) containing imidazolium cations have been performed. Ten different systems were simulated at 323 K by using united atom force fields, in which the anion size (F-, Cl-, Br-, and PF6-) and the length of the alkyl chain of 1-alkyl-3-methylimidazolium cations (1-methyl-, 1-ethyl-, 1-butyl-, and 1-octyl-) were systematically varied. It is shown that the resulting equilibrium structures account for the observed features of experimental static structure factors when available. A detailed analysis of the simultaneous effect of changing the anion and the alkyl chain on the preferential location of nearest-neighbor anions around the cations is provided. It is shown that regions above and below the imidazolium ring are the preferential ones in case of large anions. By increasing the length of the alkyl chain, nearest-neighbor anions are pushed away from the volume occupied by the flexible alkyl chain. Partial structure factors of 1-butyl- and 1-octyl- derivatives display a peak at a wave vector smaller than the main peak, indicating the occurrence of an intermediate range order in these ionic liquids due to the presence of long alkyl chains.


Journal of Physical Chemistry B | 2008

Transport Coefficients, Raman Spectroscopy, and Computer Simulation of Lithium Salt Solutions in an Ionic Liquid

Marcelo J. Monteiro; Fernanda F. C. Bazito; Leonardo J. A. Siqueira; Mauro C. C. Ribeiro; Roberto M. Torresi

Lithium salt solutions of Li(CF3SO2)2N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)2N(-), bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.


Journal of Chemical Physics | 2005

Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations

Sérgio M. Urahata; Mauro C. C. Ribeiro

Ionic dynamics in room temperature molten salts (ionic liquids) containing 1-alkyl-3-methylimidazolium cations is investigated by molecular-dynamics simulations. Calculations were performed with united atom models, which were used in a previous detailed study of the equilibrium structure of ionic liquids [S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys. 120, 1855 (2004)]. The models were used in a systematic study of the dependency of several single particle time correlation functions on anion size (F-, Cl-, Br-, and PF6-) and alkyl chain length (1-methyl-, 1-ethyl-, 1-butyl-, and 1-octyl-). Despite of large mass and size of imidazolium cations, they exhibit larger mean-square displacement than anions. A further detailed picture of ionic motions is obtained by using appropriate projections of displacements along the plane or perpendicular to the plane of the imidazolium ring. A clear anisotropy in ionic displacement is revealed, the motion on the ring plane and almost perpendicular to the 1-alkyl chain being the less hindered one. Similar projections were performed on velocity correlation functions, whose spectra were used to relate short time ionic rattling with the corresponding long time diffusive regime. Time correlation functions of cation reorientation and dihedral angles of the alkyl chains are discussed, the latter decaying much faster than the former. A comparative physical picture of time scales for distinct dynamical processes in ionic liquids is provided.


Journal of Physical Chemistry B | 2009

Alkoxy Chain Effect on the Viscosity of a Quaternary Ammonium Ionic Liquid: Molecular Dynamics Simulations

Leonardo J. A. Siqueira; Mauro C. C. Ribeiro

The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain ( Zhou et al. Chem. Eur. J. 2005 , 11 , 752. ). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalkylammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.


Journal of Physical Chemistry B | 2010

Ether-Bond-Containing Ionic Liquids and the Relevance of the Ether Bond Position to Transport Properties

Marcelo J. Monteiro; Fernanda F. Camilo; Mauro C. C. Ribeiro; Roberto M. Torresi

The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide, [BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide [BMMor][Tf(2)N]. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed H(R) values for [EtO(CH(2))(2)MMor][Tf(2)N].


Journal of Chemical Physics | 2006

Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties

Luciano T. Costa; Mauro C. C. Ribeiro

Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.


Journal of Physical Chemistry B | 2010

Room Temperature Ionic Liquid-Lithium Salt Mixtures: Optical Kerr Effect Dynamical Measurements

Bruno G. Nicolau; Adam L. Sturlaugson; Kendall Fruchey; Mauro C. C. Ribeiro; M. D. Fayer

The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to approximately 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.


Journal of Chemical Physics | 2011

Charge ordering and intermediate range order in ammonium ionic liquids

Leonardo J. A. Siqueira; Mauro C. C. Ribeiro

Molecular dynamics simulations were performed for ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion, [NTf(2)], and ammonium cations with increasing length of the alkyl chain and ether functionalized chain. The signature of charge ordering is a sharp peak in the charge-charge structure factor, S(qq)(k), whose intensity is barely affected for longer carbon chain in tetraalkylammonium systems, but decreases in ether functionalized ionic liquids. The first sharp diffraction peak (FSDP) and the corresponding intermediate range order (IRO) are observed in the total S(k) of ionic liquids containing ammonium cations with relatively long chains. The intensity of the FSDP is lower in the total S(k) of the ether derivative in comparison with the tetraalkylammonium counterpart of the same chain length. It is shown that the nature of the IRO is structural heterogeneity of polar and non-polar domains, even though domains defined by chain interactions in the ether derivatives become more polar. Charge correlation in the ether derivative is modified because cations can be coordinated by oxygen atoms of the ether functionalized chain of neighboring cations.


Chemical Reviews | 2017

Vibrational Spectroscopy of Ionic Liquids

Vitor H. Paschoal; Luiz F. O. Faria; Mauro C. C. Ribeiro

Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990s. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.


Journal of Physical Chemistry B | 2008

Shielding of Ionic Interactions by Sulfur Dioxide in an Ionic Liquid

Leonardo J. A. Siqueira; Rômulo A. Ando; Fernanda F. C. Bazito; Roberto M. Torresi; Paulo Sérgio da Silva Santos; Mauro C. C. Ribeiro

The effect of adding SO2 on the structure and dynamics of 1-butyl-3-methylimidazolium bromide (BMIBr) was investigated by low-frequency Raman spectroscopy and molecular dynamics (MD) simulations. The MD simulations indicate that the long-range structure of neat BMIBr is disrupted resulting in a liquid with relatively low viscosity and high conductivity, but strong correlation of ionic motion persists in the BMIBr-SO2 mixture due to ionic pairing. Raman spectra within the 5<omega<200 cm(-1) range at low temperature reveal the short-time dynamics, which is consistent with the vibrational density of states calculated by MD simulations. Several time correlation functions calculated by MD simulations give further insights on the structural relaxation of BMIBr-SO2.

Collaboration


Dive into the Mauro C. C. Ribeiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luiz Fernando C. de Oliveira

Universidade Federal de Juiz de Fora

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge