Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauro Centrone is active.

Publication


Featured researches published by Mauro Centrone.


Astronomy and Astrophysics | 2007

Photometric properties of facular features over the activity cycle

Ilaria Ermolli; Serena Criscuoli; Mauro Centrone; F. Giorgi; V. Penza

Aims. We have analyzed the contrast of facular features identified in a large dataset of PSPT full-disk photometric images and SoHO/MDI magnetograms, obtained from 1998 to 2005. The aim of this work is to contribute to the improvement of semi-empirical atmospheric models and of irradiance studies and to understand the reasons for the controversial results of facular contrast already presented in the literature. Methods. We used different identification methods to analyze their effects upon the results obtained. We also analyzed the effects of the limited information content in the analyzed images. Results. We show that selection effects associated with the identification method may produce significant differences in the results. The facular contrast is not only a function of both selection methods and the heliocentric angle, but also of feature size, activity level, and content of the analyzed images. Comparisons of the results obtained with computations of the most recent semi-empirical atmospheric models of facular features show that these models reproduce limb-angle corrected contrast measurements with an offset up to ≈ 1% from the disk center to μ = 0.3.


Astronomy and Astrophysics | 2009

Observation of bipolar moving magnetic features streaming out from a naked spot

F. Zuccarello; Patrizia Romano; S. L. Guglielmino; Mauro Centrone; S. Criscuoli; Ilaria Ermolli; F. Berrilli; D. Del Moro

Context. Mechanisms responsible for active-region formation, evolution, and decay have been investigated by many authors and several common features have been identified. In particular, a key element in the dispersal of the magnetic field seems to be the presence of magnetic elements, called moving magnetic features (MMFs). Aims. We analyze the short-lived sunspot group NOAA 10977, which appeared on the solar disk between 2 and 8 December 2007, to study the details of its emergence and decay phases. Methods. We performed a multi wavelength analysis of the region using images at visible (G band and Hα) and near-IR (Ca ii) wavelengths acquired by both the IBIS instrument and SOT/HINODE, EUV images (17.1 nm) acquired by TRACE, and MDI and SOT magnetograms. Results. The observed region exhibits some peculiarities. During the emergence phase the formation of the f-pore was initially observed, while the p-polarity later formed a naked spot, i.e., a sunspot without a penumbra. We measured a moat flow around this spot, and observed some MMFs streaming out from it during the decay phase. The characteristics of these MMFs allowed us to classify them as type I (U-shaped) MMFs. They were also cospatial with sites of increased brightness both in the photosphere and the chromosphere. Conclusions. The presence of bipolar MMFs in a naked spot indicates that current interpretation of bipolar MMFs, as extensions of the penumbral filaments beyond the sunspot outer boundaries, should be revised, to take into account this observational evidence. We believe that our results provide new insights into improving models of sunspot evolution.


International Journal of Astrobiology | 2015

The NIR arm of SHARK: System for coronagraphy with High-order Adaptive optics from R to K bands

Jacopo Farinato; C. Baffa; Andrea Baruffolo; Maria Bergomi; Luca Carbonaro; Alexis Carlotti; Mauro Centrone; Johanan L. Codona; Marco Dima; Simone Esposito; D. Fantinel; Giancarlo Farisato; Wolfgang Gaessler; E. Giallongo; Davide Greggio; Philip M. Hinz; Franco Lisi; Demetrio Magrin; Luca Marafatto; Fernando Pedichini; Enrico Pinna; Alfio Puglisi; Roberto Ragazzoni; Bernardo Salasnich; Marco Stangalini; Christophe Verinaud; Valentina Viotto

SHARK is a proposal aimed at investigating the technical feasibility and the scientific capabilities of high-contrast cameras to be implemented at the Large Binocular Telescope (LBT). SHARK foresees two separated channels: near-infrared (NIR) channel and visible, both providing imaging and coronagraphic modes. We describe here the SHARK instrument concept, with particular emphasis on the NIR channel at the level of a conceptual study, performed in the framework of the call for proposals for new LBT instruments. The search for giant extra-Solar planets is the main science case, as we will outline in the paper.


Proceedings of SPIE | 2012

The ESO transportable LGS Unit for measurements of the LGS photon return and other experiments

D. Bonaccini Calia; I. Guidolin; Axel Friedenauer; Manfred Hager; Vladimir Karpov; Thomas Pfrommer; Ronald Holzlöhner; Steffan Lewis; W. Hackenberg; Gianluca Lombardi; Mauro Centrone; Fernando Pedichini

Sodium laser guide stars (LGS) are used, or planned to be used, as single or multiple artificial beacons for Adaptive Optics in many present or future large and extremely large telescopes projects. In our opinion, several aspects of the LGS have not been studied systematically and thoroughly enough in the past to ensure optimal system designs. ESO has designed and built, with support from industry, an experimental transportable laser guide star unit, composed of a compact laser based on the ESO narrow-band Raman Fiber Amplifier patented technology, attached to a 30cm launch telescope. Besides field tests of the new laser technology, the purpose of the transportable unit is to conduct field experiments related to LGS and LGS-AO, useful for the optimization of future LGS-AO systems. Among the proposed ones are the validation of ESO LGS return flux simulations as a function of CW and pulsed laser properties, the feasibility of line-of-sight sodium profile measurements via partial CW laser modulation and tests of AO operation with elongated LGS in the EELT geometry configuration. After a description of the WLGSU and its main capabilities, results on the WLGSU commissioning and LGS return flux measurements are presented.


Monthly Notices of the Royal Astronomical Society | 2017

On‐sky demonstration of matched filters for wavefront measurements using ELT‐scale elongated laser guide stars

Alastair Basden; Lisa Bardou; D. Bonaccini Calia; T. Buey; Mauro Centrone; Fanny Chemla; J.-L. Gach; Eric Gendron; D. Gratadour; I. Guidolin; David Jenkins; Enrico Marchetti; Tim Morris; Richard M. Myers; James Osborn; Andrew P. Reeves; Marcos Reyes; G. Rousset; Gianluca Lombardi; Matthew J. Townson; Fabrice Vidal

The performance of adaptive optics systems is partially dependent on the algorithms used within the real‐time control system to compute wavefront slope measurements. We demonstrate the use of a matched filter algorithm for the processing of elongated laser guide star (LGS) Shack‐Hartmann images, using the CANARY adaptive optics instrument on the 4.2 m William Herschel Telescope and the European Southern Observatory Wendelstein LGS Unit placed 40 m away. This algorithm has been selected for use with the forthcoming Thirty Meter Telescope, but until now had not been demonstrated on‐sky. From the results of a first observing run, we show that the use of matched filtering improves our adaptive optics system performance, with increases in on‐sky H‐band Strehl measured up to about a factor of 1.1 with respect to a conventional centre of gravity approach. We describe the algorithm used, and the methods that we implemented to enable on‐sky demonstration.


Astronomy and Astrophysics | 2009

The digitized archive of the Arcetri spectroheliograms. Preliminary results from the analysis of Ca II K images

Ilaria Ermolli; E. Marchei; Mauro Centrone; S. Criscuoli; F. Giorgi; C. Perna

Context. The increasing interest in the recovery of historic data and the availability of new hardware resources is leading to projects to digitize photographic archives of astronomical observations. In addition to preservation, solar archives are digitized because the observations stored in such archives have the potential of providing unique information about solar magnetism, which can improve knowledge about long-term solar changes. Aims. The solar tower of the Arcetri Astrophysical Observatory produced synoptic observations of the solar atmosphere from 1926 to 1974. The photographic archive contains about 13 000 plates of full-disk Ca II K and Hα spectroheliograms acquired during about 5000 observing days. The program for the digitization and distribution of the images of this archive was carried out at the Rome Astronomical Observatory and is now complete. Methods. Nearly 13 000 plates were scanned with a commercial device and stored on DVD, as well as in a database accessible online. Image processing was developed for the reduction of the data and their photographic calibration. Results. The obtained digital archive provides the astronomical community with the Arcetri historical solar observations and with measurements of solar features identified in such observations. As an example, we show some preliminary results concerning the temporal variability of facular regions identified in the time-series of Ca II K observations. Conclusions. Existing programs studying solar activity and variability, as well as new scientific projects, will benefit from the Arcetri digital archive, since it extends the temporal baseline of digital full-disk solar observations, and it provides data for the inter-calibration of results obtained from measurements performed in similar observations.


Proceedings of SPIE | 2016

Comparison between observation and simulation of sodium LGS return flux with a 20W CW laser on Tenerife

Ronald Holzlöhner; D. Bonaccini Calia; D. Bello; Dmitry Budker; Mauro Centrone; I. Guidolin; W. Hackenberg; Steffan Lewis; Gianluca Lombardi; I. Montilla; Fernando Pedichini; F. Pedreros Bustos; Thomas Pfrommer; M. Reyes Garcia Talavera; S. M. Rochester

We report on the comparison between observations and simulations of a completed 12-month field observation campaign at Observatorio del Teide, Tenerife, using ESOs transportable 20 watt CW Wendelstein laser guide star system. This mission has provided sodium photon return flux measurements of unprecedented detail regarding variation of laser power, polarization and sodium D2b repumping. The Raman fiber laser and projector technology are very similar to that employed in the 4LGSF/AOF laser facility, recently installed and commissioned at the VLT in Paranal. The simulations are based on the open source LGSBloch density matrix simulation package and we find good overall agreement with experimental data.


Proceedings of SPIE | 2014

SHARK (System for coronagraphy with High order Adaptive optics from R to K band): A proposal for the LBT 2nd generation instrumentation

Jacopo Farinato; Fernando Pedichini; Enrico Pinna; Francesca Baciotti; C. Baffa; Andrea Baruffolo; Maria Bergomi; P. Bruno; E. Cappellaro; Luca Carbonaro; Alexis Carlotti; Mauro Centrone; Laird M. Close; Johanan L. Codona; S. Desidera; Marco Dima; Simone Esposito; D. Fantinel; Giancarlo Farisato; A. Fontana; Wolfgang Gaessler; E. Giallongo; R. Gratton; Davide Greggio; Juan Carlos Guerra; Olivier Guyon; Philip M. Hinz; F. Leone; Franco Lisi; Demetrio Magrin

This article presents a proposal aimed at investigating the technical feasibility and the scientific capabilities of high contrast cameras to be implemented at LBT. Such an instrument will fully exploit the unique LBT capabilities in Adaptive Optics (AO) as demonstrated by the First Light Adaptive Optics (FLAO) system, which is obtaining excellent results in terms of performance and reliability. The aim of this proposal is to show the scientific interest of such a project, together with a conceptual opto-mechanical study which shows its technical feasibility, taking advantage of the already existing AO systems, which are delivering the highest Strehl experienced in nowadays existing telescopes. Two channels are foreseen for SHARK, a near infrared channel (2.5-0.9 um) and a visible one (0.9 – 0.6 um), both providing imaging and coronagraphic modes. The visible channel is equipped with a very fast and low noise detector running at 1.0 kfps and an IFU spectroscopic port to provide low and medium resolution spectra of 1.5 x 1.5 arcsec fields. The search of extra solar giant planets is the main science case and the driver for the technical choices of SHARK, but leaving room for several other interesting scientific topics, which will be briefly depicted here.


Proceedings of SPIE | 2014

Laser guide star pointing camera for ESO LGS Facilities

D. Bonaccini Calia; Mauro Centrone; Fernando Pedichini; Andrea Ricciardi; Antonio Cerruto; F. Ambrosino

Every observatory using LGS-AO routinely has the experience of the long time needed to bring and acquire the laser guide star in the wavefront sensor field of view. This is mostly due to the difficulty of creating LGS pointing models, because of the opto-mechanical flexures and hysteresis in the launch and receiver telescope structures. The launch telescopes are normally sitting on the mechanical structure of the larger receiver telescope. The LGS acquisition time is even longer in case of multiple LGS systems. In this framework the optimization of the LGS systems absolute pointing accuracy is relevant to boost the time efficiency of both science and technical observations. In this paper we show the rationale, the design and the feasibility tests of a LGS Pointing Camera (LPC), which has been conceived for the VLT Adaptive Optics Facility 4LGSF project. The LPC would assist in pointing the four LGS, while the VLT is doing the initial active optics cycles to adjust its own optics on a natural star target, after a preset. The LPC allows minimizing the needed accuracy for LGS pointing model calibrations, while allowing to reach sub-arcsec LGS absolute pointing accuracy. This considerably reduces the LGS acquisition time and observations operation overheads. The LPC is a smart CCD camera, fed by a 150mm diameter aperture of a Maksutov telescope, mounted on the top ring of the VLT UT4, running Linux and acting as server for the client 4LGSF. The smart camera is able to recognize within few seconds the sky field using astrometric software, determining the stars and the LGS absolute positions. Upon request it returns the offsets to give to the LGS, to position them at the required sky coordinates. As byproduct goal, once calibrated the LPC can calculate upon request for each LGS, its return flux, its fwhm and the uplink beam scattering levels.


Nature Communications | 2018

Remote sensing of geomagnetic fields and atomic collisions in the mesosphere

Felipe Pedreros Bustos; Domenico Bonaccini Calia; Dmitry Budker; Mauro Centrone; Joschua Hellemeier; Paul Hickson; Ronald Holzlöhner; S. M. Rochester

Magnetic-field sensing has contributed to the formulation of the plate-tectonics theory, mapping of underground structures on Earth, and the study of magnetism of other planets. Filling the gap between space-based and near-Earth observations, we demonstrate a remote measurement of the geomagnetic field at an altitude of 85–100 km. The method consists of optical pumping of atomic sodium in the mesosphere with an intensity-modulated laser beam, and ground-based observation of the resultant magneto-optical resonance near the Larmor precession frequency. Here we validate this technique and measure the Larmor precession frequency of sodium and the corresponding magnetic field with an accuracy level of 0.28 mG Hz−1/2. These observations allow the characterization of atomic-collision processes in the mesosphere. Remote detection of mesospheric magnetic fields has potential applications such as mapping magnetic structures in the lithosphere, monitoring space weather, and electric currents in the ionosphere.Remote sensing of geomagnetic fields in mesosphere is both challenging and interesting to explore the magnetic field structures and atomic collision processes. Here the authors demonstrate an atomic magnetometer that utilizes the Larmor frequency in sodium atoms and operates in kilometers range.

Collaboration


Dive into the Mauro Centrone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Lombardi

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

D. Del Moro

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge