Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauro Costagli is active.

Publication


Featured researches published by Mauro Costagli.


Radiology | 2014

MR Imaging of the Substantia Nigra at 7 T Enables Diagnosis of Parkinson Disease

Mirco Cosottini; Daniela Frosini; Ilaria Pesaresi; Mauro Costagli; Laura Biagi; Roberto Ceravolo; Ubaldo Bonuccelli; Michela Tosetti

PURPOSE To evaluate the anatomy of the substantia nigra (SN) in healthy subjects by performing 7-T magnetic resonance (MR) imaging of the SN, and to prospectively define the accuracy of 7-T MR imaging in distinguishing Parkinson disease (PD) patients from healthy subjects on an individual basis. MATERIALS AND METHODS The 7-T MR imaging protocol was approved by the Italian Ministry of Health and by the local competent ethics committee. SN anatomy was described ex vivo on a gross brain specimen by using highly resolved proton-density (spin-echo proton density) and gradient-recalled-echo (GRE) images, and in vivo in eight healthy subjects (mean age, 40.1 years) by using GRE three-dimensional multiecho susceptibility-weighted images. After training on appearance of SN in eight healthy subjects, the SN anatomy was evaluated twice by two blinded observers in 13 healthy subjects (mean age, 54.7 years) and in 17 PD patients (mean age, 56.9 years). Deviations from normal SN appearance were described and indicated as abnormal, and both diagnostic accuracy and intra- and interobserver agreement for diagnosis of PD with 7-T MR imaging were calculated. RESULTS Three-dimensional multiecho susceptibility-weighted 7-T MR imaging reveals a three-layered organization of the SN allowing readers to distinguish pars compacta ventralis and dorsalis from pars reticulata. The abnormal architecture of the SN allowed a discrimination between PD patients and healthy subjects with sensitivity and specificity of 100% and 96.2% (range, 92.3%-100%), respectively. Intraobserver agreement (κ = 1) and interobserver agreement (κ = 0.932) were excellent. CONCLUSION MR imaging at 7-T allows a precise characterization of the SN and visualization of its inner organization. Three-dimensional multiecho susceptibility-weighted images can be used to accurately differentiate healthy subjects from PD patients, which provides a novel diagnostic opportunity.


American Journal of Neuroradiology | 2015

Comparison of 3T and 7T Susceptibility-Weighted Angiography of the Substantia Nigra in Diagnosing Parkinson Disease

Mirco Cosottini; Daniela Frosini; Ilaria Pesaresi; Graziella Donatelli; Paolo Cecchi; Mauro Costagli; Laura Biagi; Roberto Ceravolo; Ubaldo Bonuccelli; Michela Tosetti

BACKGROUND AND PURPOSE: Standard neuroimaging fails in defining the anatomy of the substantia nigra and has a marginal role in the diagnosis of Parkinson disease. Recently 7T MR target imaging of the substantia nigra has been useful in diagnosing Parkinson disease. We performed a comparative study to evaluate whether susceptibility-weighted angiography can diagnose Parkinson disease with a 3T scanner. MATERIALS AND METHODS: Fourteen patients with Parkinson disease and 13 healthy subjects underwent MR imaging examination at 3T and 7T by using susceptibility-weighted angiography. Two expert blinded observers and 1 neuroradiology fellow evaluated the 3T and 7T images of the sample to identify substantia nigra abnormalities indicative of Parkinson disease. Diagnostic accuracy and intra- and interobserver agreement were calculated separately for 3T and 7T acquisitions. RESULTS: Susceptibility-weighted angiography 7T MR imaging can diagnose Parkinson disease with a mean sensitivity of 93%, specificity of 100%, and diagnostic accuracy of 96%. 3T MR imaging diagnosed Parkinson disease with a mean sensitivity of 79%, specificity of 94%, and diagnostic accuracy of 86%. Intraobserver and interobserver agreement was excellent at 7T. At 3T, intraobserver agreement was excellent for experts, and interobserver agreement ranged between good and excellent. The less expert reader obtained a diagnostic accuracy of 89% at 3T. CONCLUSIONS: Susceptibility-weighted angiography images obtained at 3T and 7T differentiate controls from patients with Parkinson disease with a higher diagnostic accuracy at 7T. The capability of 3T in diagnosing Parkinson disease might encourage its use in clinical practice. The use of the more accurate 7T should be supported by a dedicated cost-effectiveness study.


Epilepsia | 2016

7T MRI in focal epilepsy with unrevealing conventional field strength imaging

Alessio De Ciantis; Carmen Barba; Laura Tassi; Mirco Cosottini; Michela Tosetti; Mauro Costagli; Manuela Bramerio; Emanuele Bartolini; Laura Biagi; Massimo Cossu; Veronica Pelliccia; Mark R. Symms; Renzo Guerrini

To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI.


American Journal of Neuroradiology | 2015

Ultra-High-Field MR Imaging in Polymicrogyria and Epilepsy

A. De Ciantis; A. J. Barkovich; Mirco Cosottini; Carmen Barba; Domenico Montanaro; Mauro Costagli; Michela Tosetti; Laura Biagi; William B. Dobyns; Renzo Guerrini

BACKGROUND AND PURPOSE: Polymicrogyria is a malformation of cortical development that is often identified in children with epilepsy or delayed development. We investigated in vivo the potential of 7T imaging in characterizing polymicrogyria to determine whether additional features could be identified. MATERIALS AND METHODS: Ten adult patients with polymicrogyria previously diagnosed by using 3T MR imaging underwent additional imaging at 7T. We assessed polymicrogyria according to topographic pattern, extent, symmetry, and morphology. Additional imaging sequences at 7T included 3D T2* susceptibility-weighted angiography and 2D tissue border enhancement FSE inversion recovery. Minimum intensity projections were used to assess the potential of the susceptibility-weighted angiography sequence for depiction of cerebral veins. RESULTS: At 7T, we observed perisylvian polymicrogyria that was bilateral in 6 patients, unilateral in 3, and diffuse in 1. Four of the 6 bilateral abnormalities had been considered unilateral at 3T. While 3T imaging revealed 2 morphologic categories (coarse, delicate), 7T susceptibility-weighted angiography images disclosed a uniform ribbonlike pattern. Susceptibility-weighted angiography revealed numerous dilated superficial veins in all polymicrogyric areas. Tissue border enhancement imaging depicted a hypointense line corresponding to the gray-white interface, providing a high definition of the borders and, thereby, improving detection of the polymicrogyric cortex. CONCLUSIONS: 7T imaging reveals more anatomic details of polymicrogyria compared with 3T conventional sequences, with potential implications for diagnosis, genetic studies, and surgical treatment of associated epilepsy. Abnormalities of cortical veins may suggest a role for vascular dysgenesis in pathogenesis.


American Journal of Neuroradiology | 2016

High-Resolution 7T MR Imaging of the Motor Cortex in Amyotrophic Lateral Sclerosis

Mirco Cosottini; Graziella Donatelli; Mauro Costagli; E. Caldarazzo Ienco; Daniela Frosini; Ilaria Pesaresi; Laura Biagi; Gabriele Siciliano; Michela Tosetti

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment. MATERIALS AND METHODS: Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data and with clinical scores. RESULTS: Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex correlated with upper motor neuron impairment (r = −0.47; P < .001) and with disease progression rate (r = −0.60; P = .009). CONCLUSIONS: The combined high spatial resolution and sensitivity to paramagnetic substances of 7T MR imaging demonstrate in vivo signal changes of the cerebral motor cortex that resemble the distribution of activated microglia within the cortex of patients with amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis.


Neuroradiology | 2014

Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla.

Mauro Costagli; Douglas A.C. Kelley; Mark R. Symms; Laura Biagi; Riccardo Stara; Eleonora Maggioni; Gianluigi Tiberi; Carmen Barba; Renzo Guerrini; Mirco Cosottini; Michela Tosetti

IntroductionThis contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing.MethodsThe technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system.ResultsThis approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria.ConclusionThis technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation.


Bioelectromagnetics | 2015

Investigation of maximum local specific absorption rate in 7 T magnetic resonance with respect to load size by use of electromagnetic simulations

Gianluigi Tiberi; Nunzia Fontana; Mauro Costagli; Riccardo Stara; Laura Biagi; Mark R. Symms; Agostino Monorchio; Alessandra Retico; Mirco Cosottini; Michela Tosetti

Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults.


Journal of Magnetic Resonance Imaging | 2016

SAR prediction in adults and children by combining measured B1+ maps and simulations at 7.0 Tesla

Gianluigi Tiberi; Mauro Costagli; Laura Biagi; Alessio De Ciantis; Nunzia Fontana; Riccardo Stara; Mark R. Symms; Mirco Cosottini; Renzo Guerrini; Michela Tosetti

To predict local and global specific absorption rate (SAR) in individual subjects.


Journal of Magnetic Resonance | 2013

Electromagnetic characterization of an MR volume coil with multilayered cylindrical load using a 2-D analytical approach

Gianluigi Tiberi; Mauro Costagli; Riccardo Stara; Mirco Cosottini; James Tropp; Michela Tosetti

We present an analytical method for the analysis of Radio Frequency (RF) volume coils for Magnetic Resonance Imaging (MRI), using a 2-D full wave solution with loading by multilayered cylinders. This allows the characterization of radio-frequency E, H, B1, B1(+) fields. Comparisons are provided with experimental data obtained at 7.0 T. The procedure permits us to clearly separate the solution to single line source problem (which we call the primordial solution) and the composite solution (i.e. full coil, i.e. the summations of primordial solutions according to the resonator drive configuration). The capability of separating the primordial solution and the composite one is fundamental for a thorough analysis of the phenomena of dielectric resonance, and of standing wave and multi-source interference. We show that dielectric resonance can be identified only by looking at the electromagnetic field from a single line source.


Parkinsonism & Related Disorders | 2017

Seven tesla MRI of the substantia nigra in patients with rapid eye movement sleep behavior disorder

Daniela Frosini; Mirco Cosottini; Graziella Donatelli; Mauro Costagli; Laura Biagi; Claudio Pacchetti; Michele Terzaghi; Pietro Cortelli; Dario Arnaldi; Enrica Bonanni; Michela Tosetti; Ubaldo Bonuccelli; Roberto Ceravolo

INTRODUCTION Susceptibility-weighted imaging of the substantia nigra (SN) both at 7 and 3 Tesla (T) has shown high accuracy in distinguishing patients with Parkinsons disease (PD) and healthy subjects (HS). Patients with rapid eye movement (REM) behavior disorder (RBD) can develop synucleinopathies, and such risk is higher with dopamine transporter single photon emission tomography (123I-FP-CIT SPECT) evidence of nigro-striatal dysfunction. We aimed at evaluating SN 7T magnetic resonance imaging (7T-MRI) in patients with RBD and determining the agreement between MRI and 123I-FP-CIT SPECT. METHODS Fifteen patients with idiopathic RBD confirmed by polysomnography and a recent 123I-FP-CIT SPECT underwent a 7T MR by using three-dimensional gradient-recalled-echo multiecho susceptibility-weighted imaging of the SN; the findings were randomly presented with those of 14 HS and 28 patients with PD and blindly evaluated by an expert neuroradiologist, according to recently published criteria. MRI and SPECT results were also compared. RESULTS Nine subjects with RBD had abnormal SPECT; among them, the findings of 7T-MRI were rated abnormal in eight. Out of six subjects with RBD with normal SPECT, the 7T-MRI findings of five were rated normal. The Cohens kappa statistic value of agreement was 0.722. CONCLUSION Gradient-recalled-echo multiecho susceptibility-weighted imaging of the SN at 7T is abnormal in 60% of patients with RBD. The 7T-MRI and 123I-FP-CIT SPECT results showed good agreement. 7T-MRI of the SN could represent a safe marker for neurodegenerative disease in patients with RBD, however longitudinal study is warranted.

Collaboration


Dive into the Mauro Costagli's collaboration.

Top Co-Authors

Avatar

Michela Tosetti

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Biagi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Retico

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge