Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauro Dalla Serra is active.

Publication


Featured researches published by Mauro Dalla Serra.


Biophysical Journal | 2001

Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.

Carlos Álvarez Valcárcel; Mauro Dalla Serra; Cristina Potrich; Ivonne Bernhart; Mayra Tejuca; Diana Martinez; Fabiola Pazos; María E. Lanio; Gianfranco Menestrina

Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA >> PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small inhibitory effect on the interaction, but this was actually larger with uncharged vesicles than with negatively charged vesicles. A study of the fluidity of the different vesicles, probed by the environment-sensitive fluorescent dye diphenylhexatriene (DPH), showed that toxin activity was also not correlated to the average membrane fluidity. It is suggested that the insertion of the toxin channel could imply the formation in the bilayer of a nonlamellar structure, a toroidal lipid pore. In this case, the presence of lipids favoring a nonlamellar phase, in particular PA and CL, strong inducers of negative curvature in the bilayer, could help in the formation of the pore. This possibility is confirmed by the fact that the formation of toxin pores strongly promotes the rate of transbilayer movement of lipid molecules, which indicates local disruption of the lamellar structure.


Journal of Biological Chemistry | 2008

Identifying the Minimal Copper- and Zinc-binding Site Sequence in Amyloid-β Peptides

Velia Minicozzi; Francesco Stellato; Massimiliano Comai; Mauro Dalla Serra; Cristina Potrich; Wolfram Meyer-Klaucke; Silvia Morante

With a combination of complementary experimental techniques, namely sedimentation assay, Fourier transform infrared spectroscopy, and x-ray absorption spectroscopy, we are able to determine the atomic structure around the metal-binding site in samples where amyloid-β (Aβ) peptides are complexed with either Cu(II) or Zn(II). Exploiting information obtained on a selected set of fragments of the Aβ peptide, we identify along the sequence the histidine residues coordinated to the metal in the various peptides we have studied (Aβ1-40, Aβ1-16, Aβ1-28, Aβ5-23, and Aβ17-40). Our data can be consistently interpreted assuming that all of the peptides encompassing the minimal 1-16 amino acidic sequence display a copper coordination mode that involves three histidines (His6, His13, and His14). In zinc-Aβ complexes, despite the fact that the metal coordination appears to be more sensitive to solution condition and shows a less rigid geometry around the binding site, a four-histidine coordination mode is seen to be preferred. Lacking a fourth histidine along the Aβ peptide sequence, this geometrical arrangement hints at a Zn(II)-promoted interpeptide aggregation mode.


Toxicon | 2001

Mode of action of β-barrel pore-forming toxins of the staphylococcal α-hemolysin family

Gianfranco Menestrina; Mauro Dalla Serra; Gilles Prévost

Staphylococcal alpha-hemolysin is the prototype of a family of bacterial exotoxins with membrane-damaging function, which share sequence and structure homology. These toxins are secreted in a soluble form which finally converts into a transmembrane pore by assembling an oligomeric beta-barrel, with hydrophobic residues facing the lipids and hydrophilic residues facing the lumen of the channel. Besides alpha-hemolysin the family includes other single chain toxins forming homo-oligomers, e.g. beta-toxin of Clostridium perfringens, hemolysin II and cytotoxin K of Bacillus cereus, but also the staphylococcal bi-component toxins, like gamma-hemolysins and leucocidins, which are only active as the combination of two similar proteins which form hetero-oligomers. The molecular basis of membrane insertion has become clearer after the determination of the crystal structure of both the oligomeric pore and the soluble monomer. Studies on this family of beta-barrel pore-forming toxins are important for many aspects: (i) they are involved in serious pathologies of humans and farmed animals, (ii) they are a good model system to investigate protein-membrane interaction and (iii) they are the basic elements for the construction of nanopores with biotechnological applications in various fields.


Toxicon | 2009

Molecular mechanism of pore formation by actinoporins

Katarina Kristan; Gabriella Viero; Mauro Dalla Serra; Peter Maček; Gregor Anderluh

Actinoporins are effective pore-forming toxins produced by sea anemones. These extremely potent, basic 20 kDa proteins readily form pores in membranes that contain sphingomyelin. Much has been learned about the molecular basis of their pore-forming mechanism in recent years. Pore formation is a multi-step process that involves recognition of membrane sphingomyelin, firm binding to the membrane accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerisation of three to four monomers. The final conductive pathway is formed by amphipathic alpha-helices, hence actinoporins are an important example of so-called alpha-helical pore-forming toxins. Actinoporins have become useful model proteins to study protein-membrane interactions, specific recognition of lipids in the membrane, and protein oligomerisation in the lipid milieu. Recent sequence and structural data of proteins similar to actinoporins indicate that they are not a unique family restricted to sea anemones as was long believed. An AF domain superfamily (abbreviated from actinoporin-like proteins and fungal fruit-body lectins) was defined and shown to contain members from three animal and two plant phyla. On the basis of functional properties of some members we hypothesise that AF domain proteins are peripheral membrane proteins. Finally, ability of actinoporins to form transmembrane pores has been exploited in some novel biomedical applications.


European Biophysics Journal | 2006

Metal binding in amyloid β-peptides shows intra- and inter-peptide coordination modes

Francesco Stellato; Gianfranco Menestrina; Mauro Dalla Serra; Cristina Potrich; Rossella Tomazzolli; Wolfram Meyer-Klaucke; Silvia Morante

X-ray absorption spectroscopy data show different metal binding site structures in β-amyloid peptides according to whether they are complexed with Cu2+ or Zn2+ ions. While the geometry around copper is stably consistent with an intra-peptide binding with three metal-coordinated Histidine residues, the zinc coordination mode depends on specific solution conditions. In particular, different sample preparations are seen to lead to different geometries around the absorber that are compatible with either an intra- or an inter-peptide coordination mode. This result reinforces the hypothesis that assigns different physiological roles to the two metals, with zinc favoring peptide aggregation and, as a consequence, plaque formation.


FEBS Journal | 2006

Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores

Ana J. García-Sáez; Manuela Coraiola; Mauro Dalla Serra; Ismael Mingarro; Peter Müller; Jesús Salgado

Proteins of the B‐cell lymphoma protein 2 (Bcl2) family are key regulators of the apoptotic cascade, controlling the release of apoptotic factors from the mitochondrial intermembrane space. A helical hairpin found in the core of water‐soluble folds of these proteins has been reported to be the pore‐forming domain. Here we show that peptides including any of the two α‐helix fragments of the hairpin of Bcl2 associated protein X (Bax) can independently induce release of large labelled dextrans from synthetic lipid vesicles. The permeability promoted by these peptides is influenced by intrinsic monolayer curvature and accompanied by fast transbilayer redistribution of lipids, supporting a toroidal pore mechanism as in the case of the full‐length protein. However, compared with the pores made by complete Bax, the pores made by the Bax peptides are smaller and do not need the concerted action of tBid. These data indicate that the sequences of both fragments of the hairpin contain the principal physicochemical requirements for pore formation, showing a parallel between the permeabilization mechanism of a complex regulated protein system, such as Bax, and the much simpler pore‐forming antibiotic peptides.


Biochimica et Biophysica Acta | 1998

The interaction of Staphylococcus aureus bi-component γ-hemolysins and leucocidins with cells and lipid membranes

Mercedes Ferreras; Frank Höper; Mauro Dalla Serra; Didier A. Colin; Gilles Prévost; Gianfranco Menestrina

Staphylococcus aureus gamma-hemolysins (HlgA, HlgB and HlgC) and Panton-Valentine leucocidins (LukS-PV and LukF-PV) are bi-component toxins forming a protein family with some relationship to alpha-toxin. Active toxins are couples formed by taking one protein from each of the two subfamilies of the S-components (LukS-PV, HlgA and HlgC) and the F-components (LukF-PV and HlgB). We compared the mode of action of the six possible couples on leukocytes, red blood cells and model lipid membranes. All couples were leucotoxic on human monocytes, whereas only four couples (HlgA+HlgB, HlgC+HlgB, LukS-PV+HlgB and HlgA+LukF-PV) were hemolytic. Toxins HlgA+HlgB and HlgC+HlgB were also able to induce permeabilisation of model membranes by forming pores via oligomerisation. The presence of membrane-bound aggregates, the smallest and most abundant of which had molecular weight and properties similar to that formed by alpha-toxin, was detected by SDS-PAGE. By infrared spectroscopy in the attenuated total reflection configuration (FTIR-ATR), the secondary structure of both components and of the aggregate were determined to be predominantly beta-sheet and turn with small variations among different toxins. Polarisation experiments indicated that the structure of the membrane complex was compatible with the formation of a beta-barrel oriented perpendicularly to the plane of the membrane, similar to that of porins. The couple LukS-PV+LukF-PV was leucotoxic, but not hemolytic. When challenged against model membranes it was able to bind to the lipid vesicles and to form the aggregate with the beta-barrel structure, but not to increase calcein permeability. Thus, the pore-forming effect correlated with the hemolytic, but not with the complete leucotoxic activity of these toxins, suggesting that other mechanisms, like the interaction with endogenous cell proteins, might also play a role in their pathogenic action.


Nature Communications | 2014

Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour

Roberta Lentini; Silvia Pérez Santero; Fabio Chizzolini; Dario Cecchi; Jason Fontana; Marta Marchioretto; Cristina Del Bianco; Jessica L. Terrell; Amy C. Spencer; Laura Martini; Michele Forlin; Michael Assfalg; Mauro Dalla Serra; William E. Bentley; Sheref S. Mansy

Previous efforts to control cellular behaviour have largely relied upon various forms of genetic engineering. Once the genetic content of a living cell is modified, the behaviour of that cell typically changes as well. However, other methods of cellular control are possible. All cells sense and respond to their environment. Therefore, artificial, non-living cellular mimics could be engineered to activate or repress already existing natural sensory pathways of living cells through chemical communication. Here we describe the construction of such a system. The artificial cells expand the senses of Escherichia coli by translating a chemical message that E. coli cannot sense on its own to a molecule that activates a natural cellular response. This methodology could open new opportunities in engineering cellular behaviour without exploiting genetically modified organisms.


Molecular Plant-microbe Interactions | 1999

The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes : A comparison of syringotoxin, syringomycin, and two syringopeptins

Mauro Dalla Serra; Giulia Fagiuoli; Paola Nordera; Ivonne Bernhart; Claudio Della Volpe; D. Di Giorgio; Alessandro Ballio; Gianfranco Menestrina

Pseudomonas syringae pv. syringae produces two groups of cyclic lipodepsipeptides (LDPs): the nona-peptides syringomycins, syringostatins, and syringotoxin (ST), and the more complex syringopeptins composed of either 22 or 25 amino acid residues (SP22 and SP25). Both classes of peptides significantly contribute to bacterial pathogenesis and their primary target of action seems to be the plasma membrane. We studied and compared the activity of some members of these two classes of LDPs on red blood cells and on model membranes (monolayers and unilamellar vesicles). All peptides induced red blood cell hemolysis. The mechanism was apparently that of a colloid-osmotic shock caused by the formation of pores, as it could be prevented by osmoticants of adequate size. Application of the Renkin equation indicated a radius of approximately 1 nm for the lesions formed by syringopeptins SP22A and SP25A, whereas those formed by syringomycin E (SRE) had a variable, dose-dependent size ranging from 0.7 up to 1.7 nm. All tested LDPs displayed surface activity, forming peptide monolayers with average molecular areas of 1.2 nm2 (SRE), 1.5 nm2 (SP22A), and 1.3 nm2 (SP25A). They also partitioned into preformed lipid monolayers occupying molecular areas that ranged from 0.6 to 1.7 nm2 depending on the peptide and the lipid composition of the film. These LDPs formed channels in lipid vesicles as indicated by the release of an entrapped fluorescent dye (calcein). The extent of permeabilization was dependent on the concentration of the peptide and the composition of the lipid vesicles, with a preference for those containing a sterol. From the dose dependence of the permeabilization it was inferred that LDPs increased membrane permeability by forming oligomeric channels containing from four to seven monomers. On average, syringopeptin oligomers were smaller than SRE and ST oligomers.


Journal of Biological Chemistry | 2011

Human perforin employs different avenues to damage membranes

Tilen Praper; Andreas F.-P. Sonnen; Gabriella Viero; Aleš Kladnik; Christopher J. Froelich; Gregor Anderluh; Mauro Dalla Serra; Robert J. C. Gilbert

Perforin (PFN) is a pore-forming protein produced by cytotoxic lymphocytes that aids in the clearance of tumor or virus-infected cells by a mechanism that involves the formation of transmembrane pores. The properties of PFN pores and the mechanism of their assembly remain unclear. Here, we studied pore characteristics by functional and structural methods to show that perforin forms pores more heterogeneous than anticipated. Planar lipid bilayer experiments indicate that perforin pores exhibit a broad range of conductances, from 0.15 to 21 nanosiemens. In comparison with large pores that possessed low noise and remained stably open, small pores exhibited high noise and were very unstable. Furthermore, the opening step and the pore size were dependent on the lipid composition of the membrane. The heterogeneity in pore sizes was confirmed with cryo-electron microscopy and showed a range of sizes matching that observed in the conductance measurements. Furthermore, two different membrane-bound PFN conformations were observed, interpreted as pre-pore and pore states of the protein. The results collectively indicate that PFN forms heterogeneous pores through a multistep mechanism and provide a new paradigm for understanding the range of different effects of PFN and related membrane attack complex/perforin domain proteins observed in vivo and in vitro.

Collaboration


Dive into the Mauro Dalla Serra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Maček

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. C. Gilbert

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Froelich

NorthShore University HealthSystem

View shared research outputs
Researchain Logo
Decentralizing Knowledge