Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mauro W. Costa is active.

Publication


Featured researches published by Mauro W. Costa.


Circulation Research | 2014

Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair

Milena B. Furtado; Mauro W. Costa; Edward M Adi Pranoto; Ekaterina Salimova; Alexander R. Pinto; Nicholas T. Lam; Anthony Park; Paige Snider; Anjana Chandran; Richard P. Harvey; Richard L. Boyd; Simon J. Conway; James T. Pearson; David M. Kaye; Nadia Rosenthal

Rationale: Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment, but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective: To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results: High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical mesenchymal stem cell and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. While genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, T-box 20, caused marked myocardial dysmorphology and perturbations in scar formation on myocardial infarction. Conclusions: The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs, and direct contribution to cardiac development and repair provoke alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies.


Nature Communications | 2013

Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy

Gurpreet Kaur; Mauro W. Costa; Christian M. Nefzger; Juan Silva; Juan Carlos Fierro-González; Jose M. Polo; Toby D. M. Bell; Nicolas Plachta

Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.


Genetic Testing and Molecular Biomarkers | 2010

GATA4 mutations in 357 unrelated patients with congenital heart malformation.

Tanya L. Butler; Giorgia Esposito; Gillian M. Blue; Andrew D. Cole; Mauro W. Costa; Leigh B. Waddell; Gina Walizada; Gary F. Sholler; Edwin P. Kirk; Michael P. Feneley; Richard P. Harvey; David S. Winlaw

Congenital heart disease (CHD) represents one of the most common birth defects, but the genetic causes remain largely unknown. Mutations in GATA4, encoding a zinc finger transcription factor with a pivotal role in heart development, have been associated with CHD in several familial cases and a small subset of sporadic patients. To estimate the pathogenetic role of GATA4 in CHD, we screened for mutations in 357 unrelated patients with different congenital heart malformations. In addition to nine synonymous changes, we identified two known (A411V and D425N) and two novel putative mutations (G69D and P163R) in five patients with atrial or ventricular septal defects that were not seen in control subjects. The four mutations did not show altered GATA4 transcriptional activity in synergy with the transcription factors NKX2-5 and TBX20. Our data expand the spectrum of mutations associated with cardiac septal defects but do not support GATA4 mutations as a common cause of CHD.


PLOS ONE | 2013

Effect of Oxygen on Cardiac Differentiation in Mouse iPS Cells: Role of Hypoxia Inducible Factor-1 and Wnt/Beta-Catenin Signaling

Tanya L. Medley; Milena B. Furtado; Nicholas T. Lam; Rejhan Idrizi; David R. Williams; Paul J. Verma; Mauro W. Costa; David M. Kaye

Background Disturbances in oxygen levels have been found to impair cardiac organogenesis. It is known that stem cells and differentiating cells may respond variably to hypoxic conditions, whereby hypoxia may enhance stem cell pluripotency, while differentiation of multiple cell types can be restricted or enhanced under hypoxia. Here we examined whether HIF-1alpha modulated Wnt signaling affected differentiation of iPS cells into beating cardiomyocytes. Objective We investigated whether transient and sustained hypoxia affects differentiation of cardiomyocytes derived from murine induced pluripotent stem (iPS) cells, assessed the involvement of HIF-1alpha (hypoxia-inducible factor-1alpha) and the canonical Wnt pathway in this process. Methods Embryoid bodies (EBs) derived from iPS cells were differentiated into cardiomyocytes and were exposed either to 24 h normoxia or transient hypoxia followed by a further 13 days of normoxic culture. Results At 14 days of differentiation, 59±2% of normoxic EBs were beating, whilst transient hypoxia abolished beating at 14 days and EBs appeared immature. Hypoxia induced a significant increase in Brachyury and islet-1 mRNA expression, together with reduced troponin C expression. Collectively, these data suggest that transient and sustained hypoxia inhibits maturation of differentiating cardiomyocytes. Compared to normoxia, hypoxia increased HIF-1alpha, Wnt target and ligand genes in EBs, as well as accumulation of HIF-1alpha and beta-catenin in nuclear protein extracts, suggesting involvement of the Wnt/beta-catenin pathway. Conclusion Hypoxia impairs cardiomyocyte differentiation and activates Wnt signaling in undifferentiated iPS cells. Taken together the study suggests that oxygenation levels play a critical role in cardiomyocyte differentiation and suggest that hypoxia may play a role in early cardiogenesis.


Genomics data | 2014

Microarray profiling to analyse adult cardiac fibroblast identity.

Milena B. Furtado; Hieu T. Nim; Jodee Ann Gould; Mauro W. Costa; Nadia Rosenthal; Sarah E. Boyd

Heart failure is one of the leading causes of death worldwide [1–4]. Current therapeutic strategies are inefficient and cannot cure this chronic and debilitating condition [5]. Ultimately, heart transplants are required for patient survival, but donor organs are scarce in availability and only prolong the life-span of patients for a limited time. Fibrosis is one of the main pathological features of heart failure [6,7], caused by inappropriate stimulation of fibroblasts and excessive extracellular matrix production. Therefore, an in-depth understanding of the cardiac fibroblast is essential to underpin effective therapeutic treatments for heart failure [5]. Fibroblasts in general have been an underappreciated cell type, regarded as relatively inert and providing only basic functionality; they are usually referred to as the ‘biological glue’ of all tissues in the body. However, more recent literature suggests that they actively participate in organ homeostasis and disease [7,8]. We have recently uncovered a unique molecular identity for fibroblasts isolated from the heart [9], expressing a set of cardiogenic transcription factors that have been previously associated with cardiomyocyte ontogenesis. This signature suggests that cardiac fibroblasts may be ideal for use in stem cell replacement therapies, as they may retain the memory of where they derive from embryologically. Our data also revealed that about 90% of fibroblasts from both tail and heart origins share a cell surface signature that has previously been described for mesenchymal stem cells (MSCs), raising the possibility that fibroblasts and MSCs may in fact be the same cell type. Thus, our findings carry profound implications for the field of regenerative medicine. Here, we describe detailed methodology and quality controls related to the gene expression profiling of cardiac fibroblasts, deposited at the Gene Expression Omnibus (GEO) under the accession number GSE50531. We also provide the R code to easily reproduce the data quantification and analysis processes.


Differentiation | 2016

The cardiac fibroblast: Origin, identity and role in homeostasis and disease.

Milena B. Furtado; Mauro W. Costa; Nadia Rosenthal

The mammalian heart is responsible for supplying blood to two separate circulation circuits in a parallel manner. This design provides efficient oxygenation and nutrients to the whole body through the left-sided pump, while the right-sided pump delivers blood to the pulmonary circulation for re-oxygenation. In order to achieve this demanding job, the mammalian heart evolved into a highly specialised organ comprised of working contractile cells or cardiomyocytes, a directional and insulated conduction system, capable of independently generating and conducting electric impulses that synchronises chamber contraction, valves that allow the generation of high pressure and directional blood flow into the circulation, coronary circulation, that supplies oxygenated blood for the heart muscle high metabolically active pumping role and inlet/outlet routes, as the venae cavae and pulmonary veins, aorta and pulmonary trunk. This organization highlights the complexity and compartmentalization of the heart. This review will focus on the cardiac fibroblast, a cell type until recently ignored, but that profoundly influences heart function in its various compartments. We will discuss current advances on definitions, molecular markers and function of cardiac fibroblasts in heart homeostasis and disease.


Differentiation | 2016

A novel conditional mouse model for Nkx2-5 reveals transcriptional regulation of cardiac ion channels.

Milena B. Furtado; Julia C. Wilmanns; Anjana Chandran; Mary A. Tonta; Christine Biben; Michael Peter Eichenlaub; Harold A. Coleman; Silke Berger; Romaric Bouveret; Reena Singh; Richard P. Harvey; Mirana Ramialison; James T. Pearson; Helena C. Parkington; Nadia Rosenthal; Mauro W. Costa

Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common abnormality found in patients. Here we describe a novel mouse model and subsequent implications of Nkx2-5 loss for aspects of myocardial electrical activity. In this work we have engineered a new Nkx2-5 conditional knockout mouse in which flox sites flank the entire Nkx2-5 locus, and validated this line for the study of heart development, differentiation and disease using a full deletion strategy. While our homozygous knockout mice show typical embryonic malformations previously described for the lack of the Nkx2-5 gene, hearts of heterozygous adult mice show moderate morphological and functional abnormalities that are sufficient to sustain blood supply demands under homeostatic conditions. This study further reveals intriguing aspects of Nkx2-5 function in the control of cardiac electrical activity. Using a combination of mouse genetics, biochemistry, molecular and cell biology, we demonstrate that Nkx2-5 regulates the gene encoding Kcnh2 channel and others, shedding light on potential mechanisms generating electrical abnormalities observed in patients bearing NKX2-5 dysfunction and opening opportunities to the study of novel therapeutic targets for anti-arrhythmogenic therapies.


PLOS ONE | 2015

CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

Hieu T. Nim; Milena B. Furtado; Mauro W. Costa; Hiroaki Kitano; Nadia Rosenthal; Sarah E. Boyd

The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.


JCI insight | 2017

Point mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling

Milena B. Furtado; Julia C. Wilmanns; Anjana Chandran; Joelle Perera; Olivia Hon; Christine Biben; Taylor J. Willow; Hieu T. Nim; Gurpreet Kaur; Stephanie E. Simonds; Qizhu Wu; David Willians; Ekaterina Salimova; Nicolas Plachta; James M. Denegre; Stephen A. Murray; Diane Fatkin; Michael A. Cowley; James T. Pearson; David M. Kaye; Mirana Ramialison; Richard P. Harvey; Nadia Rosenthal; Mauro W. Costa

Mutations in the Nkx2-5 gene are a main cause of congenital heart disease. Several studies have addressed the phenotypic consequences of disrupting the Nkx2-5 gene locus, although animal models to date failed to recapitulate the full spectrum of the human disease. Here, we describe a new Nkx2-5 point mutation murine model, akin to its human counterpart disease-generating mutation. Our model fully reproduces the morphological and physiological clinical presentations of the disease and reveals an understudied aspect of Nkx2-5-driven pathology, a primary right ventricular dysfunction. We further describe the molecular consequences of disrupting the transcriptional network regulated by Nkx2-5 in the heart and show that Nkx2-5-dependent perturbation of the Wnt signaling pathway promotes heart dysfunction through alteration of cardiomyocyte metabolism. Our data provide mechanistic insights on how Nkx2-5 regulates heart function and metabolism, a link in the study of congenital heart disease, and confirms that our models are the first murine genetic models to our knowledge to present all spectra of clinically relevant adult congenital heart disease phenotypes generated by NKX2-5 mutations in patients.


bioRxiv | 2018

Metformin Intervention Prevents Cardiac Dysfunction in a Murine Model of Adult Congenital Heart Disease

Mauro W. Costa; Julia C. Wilmanns; Raghav Pandey; Olivia Hon; Anjana Chandran; Jan M. Schilling; Qizhu Wu; Gael Cagnone; Preeti Bais; Vivek Phillip; Heidi Kocalis; Stuart K. Archer; James T. Pearson; Mirana Ramialison; Joerg Heineke; Hemal H. Patel; Nadia Rosenthal; Milena B. Furtado

Congenital heart disease (CHD) is the most frequent birth defect worldwide and the number of adult patients with CHD, now referred to as ACHD, is increasing. However the mechanisms whereby ACHD predisposes patients to heart dysfunction are still unclear. ACHD is strongly associated with metabolic syndrome, but how ACHD interacts with poor modern lifestyle choices and other comorbidities, such as hypertension, obesity and diabetes, is mostly unknown. Using a genetic mouse model of ACHD we showed that ACHD mice placed under metabolic stress (high fat diet) displayed decreased heart function. Comprehensive physiological, biochemical and molecular analysis showed that ACHD hearts exhibited early changes in energy metabolism that preceded cardiac dysfunction. Restoration of metabolic balance by metformin prevented the development of heart dysfunction in ACHD mice. This study reveals that early metabolic impairment reinforces heart dysfunction in ACHD predisposed individuals and diet or pharmacological interventions can be used to modulate heart function and attenuate heart failure and may be an important avenue for intervention in ACHD.

Collaboration


Dive into the Mauro W. Costa's collaboration.

Top Co-Authors

Avatar

Milena B. Furtado

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar

Richard P. Harvey

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nadia Rosenthal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Biben

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hieu T. Nim

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar

Mirana Ramialison

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge