Max F. Hantke
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Max F. Hantke.
Nature | 2011
M. Marvin Seibert; Tomas Ekeberg; Filipe R. N. C. Maia; Martin Svenda; Jakob Andreasson; O Jonsson; Duško Odić; Bianca Iwan; Andrea Rocker; Daniel Westphal; Max F. Hantke; Daniel P. DePonte; Anton Barty; Joachim Schulz; Lars Gumprecht; Nicola Coppola; Andrew Aquila; Mengning Liang; Thomas A. White; Andrew V. Martin; Carl Caleman; Stephan Stern; Chantal Abergel; Virginie Seltzer; Jean-Michel Claverie; Christoph Bostedt; John D. Bozek; Sébastien Boutet; A. Miahnahri; Marc Messerschmidt
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
Journal of Applied Crystallography | 2014
Anton Barty; Richard A. Kirian; Filipe R. N. C. Maia; Max F. Hantke; Chun Hong Yoon; Thomas A. White; Henry N. Chapman
The emerging technique of serial X-ray diffraction requires new software tools for the efficient analysis of large volumes of data. Event selection early in the analysis pipeline is highly advantageous. The described software for classifying, sorting and analysing events is freely available to the general community.
Nature | 2012
N. D. Loh; Christina Y. Hampton; Andrew V. Martin; Dmitri Starodub; Raymond G. Sierra; A. Barty; Andrew Aquila; Joachim Schulz; Lukas Lomb; Jan Steinbrener; Robert L. Shoeman; Stephan Kassemeyer; Christoph Bostedt; John D. Bozek; Sascha W. Epp; Benjamin Erk; Robert Hartmann; Daniel Rolles; A. Rudenko; Benedikt Rudek; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; G. Hauser; Peter Holl; Emanuele Pedersoli; Mengning Liang; M. M. Hunter; Lars Gumprecht; Nicola Coppola
The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles’ native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.
Nature Communications | 2015
Gijs van der Schot; Martin Svenda; Filipe R. N. C. Maia; Max F. Hantke; Daniel P. DePonte; M. Marvin Seibert; Andrew Aquila; Joachim Schulz; Richard A. Kirian; Mengning Liang; Francesco Stellato; Bianca Iwan; Jakob Andreasson; Nicusor Timneanu; Daniel Westphal; F. Nunes Almeida; Duško Odić; Dirk Hasse; Gunilla H. Carlsson; Daniel S. D. Larsson; Anton Barty; Andrew V. Martin; S. Schorb; Christoph Bostedt; John D. Bozek; Daniel Rolles; Artem Rudenko; Sascha W. Epp; Lutz Foucar; Benedikt Rudek
There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.
Optics Express | 2012
Andrew V. Martin; Fenglin Wang; N. D. Loh; Tomas Ekeberg; Filipe R. N. C. Maia; Max F. Hantke; G. van der Schot; Christina Y. Hampton; Raymond G. Sierra; Andy Aquila; Sasa Bajt; Miriam Barthelmess; Christoph Bostedt; John D. Bozek; Nicola Coppola; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; M. Frank; Heinz Graafsma; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; G. Hauser; Helmut Hirsemann; Peter Holl; Stephan Kassemeyer; Nils Kimmel; Mengning Liang
The resolution of single-shot coherent diffractive imaging at X-ray free-electron laser facilities is limited by the low signal-to-noise level of diffraction data at high scattering angles. The iterative reconstruction methods, which phase a continuous diffraction pattern to produce an image, must be able to extract information from these weak signals to obtain the best quality images. Here we show how to modify iterative reconstruction methods to improve tolerance to noise. The method is demonstrated with the hybrid input-output method on both simulated data and single-shot diffraction patterns taken at the Linac Coherent Light Source.
Scientific Data | 2016
Anna Munke; Jakob Andreasson; Andrew Aquila; Salah Awel; Kartik Ayyer; Anton Barty; Richard Bean; Peter Berntsen; Johan Bielecki; Sébastien Boutet; Maximilian Bucher; Henry N. Chapman; Benedikt J. Daurer; Hasan Demirci; Veit Elser; Petra Fromme; Janos Hajdu; Max F. Hantke; Akifumi Higashiura; Brenda G. Hogue; Ahmad Hosseinizadeh; Yoonhee Kim; Richard A. Kirian; Hemanth K. N. Reddy; Ti Yen Lan; Daniel S. D. Larsson; Haiguang Liu; N. Duane Loh; Filipe R. N. C. Maia; Adrian P. Mancuso
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
Optics Express | 2013
Hyung Joo Park; N. Duane Loh; Raymond G. Sierra; Christina Y. Hampton; Dmitri Starodub; Andrew V. Martin; Anton Barty; Andrew Aquila; Joachim Schulz; Jan Steinbrener; Robert L. Shoeman; Lukas Lomb; Stephan Kassemeyer; Christoph Bostedt; John D. Bozek; Sascha W. Epp; Benjamin Erk; Robert Hartmann; Daniel Rolles; Artem Rudenko; Benedikt Rudek; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Guenter Hauser; Peter Holl; Emanuele Pedersoli; Mengning Liang; Mark S. Hunter; Lars Gumprecht
Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
Journal of Applied Crystallography | 2016
Benedikt J. Daurer; Max F. Hantke; Carl Nettelblad; Filipe R. N. C. Maia
Hummingbird is an open-source scalable Python-based software tool for real-time analysis of diffraction data with the purpose of giving users immediate feedback during their experiments.
Optics Express | 2014
Jakob Andreasson; Andrew V. Martin; Meng Liang; Nicusor Timneanu; Andrew Aquila; Fenglin Wang; Bianca Iwan; Martin Svenda; Tomas Ekeberg; Max F. Hantke; Johan Bielecki; Daniel Rolles; Artem Rudenko; Lutz Foucar; Robert Hartmann; Benjamin Erk; Benedikt Rudek; Henry N. Chapman; Janos Hajdu; Anton Barty
The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e.g. for the European XFEL, which is expected to produce 100 million pulses per hour.
Optics Express | 2013
N. Duane Loh; Dmitri Starodub; Lukas Lomb; Christina Y. Hampton; Andrew V. Martin; Raymond G. Sierra; Anton Barty; Andrew Aquila; Joachim Schulz; Jan Steinbrener; Robert L. Shoeman; Stephan Kassemeyer; Christoph Bostedt; John D. Bozek; Sascha W. Epp; Benjamin Erk; Robert Hartmann; Daniel Rolles; Artem Rudenko; Benedikt Rudek; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Guenter Hauser; Peter Holl; Emanuele Pedersoli; Mengning Liang; Mark S. Hunter; Lars Gumprecht; Nicola Coppola
Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.