Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Max J. Kurz is active.

Publication


Featured researches published by Max J. Kurz.


Clinical Biomechanics | 2003

Nonlinear dynamics indicates aging affects variability during gait

Ugo H. Buzzi; Nicholas Stergiou; Max J. Kurz; Patricia A. Hageman; Jack Heidel

OBJECTIVE To investigate the nature of variability present in time series generated from gait parameters of two different age groups via a nonlinear analysis. DESIGN Measures of nonlinear dynamics were used to compare kinematic parameters between elderly and young females. BACKGROUND Aging may lead to changes in motor variability during walking, which may explain the large incidence of falls in the elderly. METHODS Twenty females, 10 younger (20-37 yr) and 10 older (71-79 yr) walked on a treadmill for 30 consecutive gait cycles. Time series from selected kinematic parameters of the right lower extremity were analyzed using nonlinear dynamics. The largest Lyapunov exponent and the correlation dimension of all time series, and the largest Lyapunov exponent of the original time series surrogated were calculated. Standard deviations and coefficient of variations were also calculated for selected discrete points from each gait cycle. Independent t-tests were used for statistical comparisons. RESULTS The Lyapunov exponents were found to be significantly different from their surrogate counterparts. This indicates that the fluctuations observed in the time series may reflect deterministic processes by the neuromuscular system. The elderly exhibited significantly larger Lyapunov exponents and correlation dimensions for all parameters evaluated indicating local instability. The linear measures indicated that the elderly demonstrated significantly higher variability. CONCLUSIONS The nonlinear analysis revealed that fluctuations in the time series of certain gait parameters are not random but display a deterministic behavior. This behavior may degrade with physiologic aging resulting in local instability. RELEVANCE Elderly show increased local instability or inability to compensate to the natural stride-to-stride variations present during locomotion. We hypothesized that this may be the one of the reasons for the increases in falling due to aging. Future efforts should attempt to evaluate this hypothesis by making comparisons to pathological subjects (i.e. elderly fallers), and examine the sensitivity and specificity of the nonlinear methods used in this study to aid clinical assessment.


BMC Neuroscience | 2009

Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson's disease with severe neurodegeneration

Konstantinos Pothakos; Max J. Kurz; Yuen-Sum Lau

BackgroundAnimal models of Parkinsons disease have been widely used for investigating the mechanisms of neurodegenerative process and for discovering alternative strategies for treating the disease. Following 10 injections with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 25 mg/kg) and probenecid (250 mg/kg) over 5 weeks in mice, we have established and characterized a chronic mouse model of Parkinsons disease (MPD), which displays severe long-term neurological and pathological defects resembling that of the human Parkinsons disease in the advanced stage. The behavioral manifestations in this chronic mouse model of Parkinsons syndrome remain uninvestigated. The health benefit of exercise in aging and in neurodegenerative disorders including the Parkinsons disease has been implicated; however, clinical and laboratory studies in this area are limited. In this research with the chronic MPD, we first conducted a series of behavioral tests and then investigated the impact of endurance exercise on the identified Parkinsonian behavioral deficits.ResultsWe report here that the severe chronic MPD mice showed significant deficits in their gait pattern consistency and in learning the cued version of the Morris water maze. Their performances on the challenging beam and walking grid were considerably attenuated suggesting the lack of balance and motor coordination. Furthermore, their spontaneous and amphetamine-stimulated locomotor activities in the open field were significantly suppressed. The behavioral deficits in the chronic MPD lasted for at least 8 weeks after MPTP/probenecid treatment. When the chronic MPD mice were exercise-trained on a motorized treadmill 1 week before, 5 weeks during, and 8–12 weeks after MPTP/probenecid treatment, the behavioral deficits in gait pattern, spontaneous ambulatory movement, and balance performance were reversed; whereas neuronal loss and impairment in cognitive skill, motor coordination, and amphetamine-stimulated locomotor activity were not altered when compared to the sedentary chronic MPD animals.ConclusionThis study indicates that in spite of the drastic loss of dopaminergic neurons and depletion of dopamine in the severe chronic MPD, endurance exercise training effectively reverses the Parkinsons like behavioral deficits related to regular movement, balance and gait performance.


Journal of Biomechanics | 2002

Effect of normalization and phase angle calculations on continuous relative phase

Max J. Kurz; Nicholas Stergiou

The purpose of this investigation was to determine if phase plot normalization and phase angle definitions would have an affect on continuous relative phase calculations. A subject ran on a treadmill while sagittal plane kinematic data were collected with a high-speed (180 Hz) camera. Segmental angular displacements and velocities were used to create phase plots, and examine the coordination between the leg and thigh. Continuous relative phase was calculated with a combination of two different amplitude normalization techniques, and two different phase angle definitions. Differences between the techniques were noted with a root mean square (RMS) calculation. RMS values indicated that there were differences in the configuration of the non-normalized and normalized continuous relative phase curves. Graphically and numerically, it was noted that normalization tended to modify the continuous relative phase curve configuration. Differences in continuous relative phase curves were due to a loss in the aspect ratio of the phase plot during normalization. Normalization tended to neglect the nonlinear forces acting on the system since it did not maintain the aspect ratio of the phase plot. Normalization is not necessary because the arc tangent function accounts for differences in amplitudes between the segments. RMS values indicated that there were profound differences in the continuous relative phase curve when the phase angle was normalized and a phase angle was calculated relative to the right horizontal axis.


Neuroscience | 2007

Endurance exercise promotes cardiorespiratory rehabilitation without neurorestoration in the chronic mouse model of Parkinsonism with severe neurodegeneration

Muhammed Al-Jarrah; Konstantinos Pothakos; Lesya Novikova; Irina V. Smirnova; Max J. Kurz; Lisa Stehno-Bittel; Yuen-Sum Lau

Physical rehabilitation with endurance exercise for patients with Parkinsons disease has not been well established, although some clinical and laboratory reports suggest that exercise may produce a neuroprotective effect and restore dopaminergic and motor functions. In this study, we used a chronic mouse model of Parkinsonism, which was induced by injecting male C57BL/6 mice with 10 doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg) and probenecid (250 mg/kg) over 5 weeks. This chronic parkinsonian model displays a severe and persistent loss of nigrostriatal neurons, resulting in robust dopamine depletion and locomotor impairment in mice. Following the induction of Parkinsonism, these mice were able to sustain an exercise training program on a motorized rodent treadmill at a speed of 18 m/min, 0 degrees of inclination, 40 min/day, 5 days/week for 4 weeks. At the end of exercise training, we examined and compared their cardiorespiratory capacity, behavior, and neurochemical changes with that of the probenecid-treated control and sedentary parkinsonian mice. The resting heart rate after 4 weeks of exercise in the chronic parkinsonian mice was significantly lower than the rate before exercise, whereas the resting heart rate at the beginning and 4 weeks afterward in the control or sedentary parkinsonian mice was unchanged. Exercised parkinsonian mice also recovered from elevated electrocardiogram R-wave amplitude that was detected in the parkinsonian mice without exercise for 4 weeks. The values of oxygen consumption, carbon dioxide production, and body heat generation in the exercised parkinsonian mice before and during the Bruce maximal exercise challenge test were all significantly lower than that of their sedentary counterparts. Furthermore, the exercised parkinsonian mice demonstrated a greater mass in the left ventricle of the heart and an increased level of citrate synthase activity in the skeletal muscles. The amphetamine-induced, dopamine release-dependent locomotor activity was markedly inhibited in the sedentary parkinsonian mice and was also inhibited in the exercised parkinsonian mice. Finally, neuronal recovery from the loss of nigrostriatal tyrosine hydroxylase expression and dopamine levels in the severe parkinsonian mice after exercise was not evident. Taken all together, these data suggest that 4 weeks of treadmill exercise promoted physical endurance, resulting in cardiorespiratory and metabolic adaptations in the chronic parkinsonian mice with severe neurodegeneration without demonstrating a restorative potential for the nigrostriatal dopaminergic function.


Knee Surgery, Sports Traumatology, Arthroscopy | 2005

The effect of anterior cruciate ligament recontruction on lower extremity relative phase dynamics during walking and running

Max J. Kurz; Nicholas Stergiou; Ugo H. Buzzi; Anastasios D. Georgoulis

The purpose of this investigation was to use relative phase dynamics to evaluate gait in individuals with a reconstructed anterior cruciate ligament (ACL) during walking and running. Relative phase dynamics can describe the coordination strategies between the interacting segments at the lower extremity. Ten subjects who had undergone ACL reconstruction using the central third of their patellar tendon and ten healthy controls walked and ran on a treadmill at a self-selected pace. Relative phase dynamics were calculated for the foot–shank and shank–thigh coordinative relationships. Statistical differences between the groups were noted for the foot–shank relationship (p<0.05) during both walking and running and for the shank–thigh relationship (p<0.05) during walking. Our results indicate that current ACL reconstructive techniques may result in altered relative phase dynamics. These changes in relative phase dynamics could be related to a loss of sensory information about joint position and velocity that is typically provided by the intact ACL. Additionally, relative phase adaptations could be a learned response from the early stages of postsurgical rehabilitation. Relative phase dynamics provide quantitative information about the dynamic status of the ACL-reconstructed knee that cannot be gained from the conventional time-series evaluation of gait analysis data. Relative phase dynamics measures should supplement the conventional gait analysis measures that are used today for the clinical evaluation of the functional dynamic stability of the reconstructed knee. The examination of relative phase dynamics could be clinically important for the quantification of new ACL surgical interventions and of patient performance at various stages of rehabilitation. Further research should incorporate relative phase dynamics to understand the influence of ACL reconstruction on coordination and functional patient outcomes.


Neuroscience Letters | 2003

The aging humans neuromuscular system expresses less certainty for selecting joint kinematics during gait

Max J. Kurz; Nicholas Stergiou

This investigation quantitatively characterized the certainty of the aging neuromuscular system in selecting a joint range of motion during gait based on the statistical concept of entropy. Elderly and young control groups walked on a treadmill at a self-selected pace. Joint angles were calculated for the ankle, knee and hip. We hypothesized that the aging group would exhibit less certainty in selecting a joint range of motion during gait. Our results supported this hypothesis, and indicated that aged individuals demonstrated statistically less certainty for the knee (16.8%) and hip (24.6%). We suggest that neurophysiological changes associated with aging may result in less certainty of the neuromuscular system in selecting a stable gait.


Perceptual and Motor Skills | 2002

Comparison of Gait Patterns between Young and Elderly Women: An Examination of Coordination:

Jennifer E. Byrne; Nicholas Stergiou; Daniel Blanke; Jeremy J. Houser; Max J. Kurz; Patricia A. Hageman

This study investigated intralimb coordination during walking in young and elderly women using the theoretical model of dynamical systems. 20 women, 10 Young (M age = 24.6 yr., SD = 3.2 yr.) and 10 Elderly (M age = 73.7 yr., SD = 4.9 yr.), were videotaped during free speed gait and gait perturbed by an ankle weight. Two parameters, one describing the phasing relationship between segments (mean absolute relative phase) and the other the variability of this relationship (deviation in phase), were calculated from the kinematics. Two-way analysis of variance (age and weight) with repeated measures on weight indicated that during the braking period the weight increased the mean absolute relative phase between the shank and the thigh and decreased it between the foot and the shank. The Elderly women had significant smaller values for the mean absolute relative phase between the shank and the thigh during the braking period. For the same period, deviation in phase increased for the segmental relationship between the shank and the thigh. The findings suggest that changes in intralimb coordination take place with asymmetrical weighting and the aging process. These changes are most clearly present during the braking period.


Biological Cybernetics | 2005

An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model

Max J. Kurz; Nicholas Stergiou

Chaos is a central feature of human locomotion and has been suggested to be a window to the control mechanisms of locomotion. In this investigation, we explored how the principles of chaos can be used to control locomotion with a passive dynamic bipedal walking model that has a chaotic gait pattern. Our control scheme was based on the scientific evidence that slight perturbations to the unstable manifolds of points in a chaotic system will promote the transition to new stable behaviors embedded in the rich chaotic attractor. Here we demonstrate that hip joint actuations during the swing phase can provide such perturbations for the control of bifurcations and chaos in a locomotive pattern. Our simulations indicated that systematic alterations of the hip joint actuations resulted in rapid transitions to any stable locomotive pattern available in the chaotic locomotive attractor. Based on these insights, we further explored the benefits of having a chaotic gait with a biologically inspired artificial neural network (ANN) that employed this chaotic control scheme. Remarkably, the ANN was quite robust and capable of selecting a hip joint actuation that rapidly transitioned the passive dynamic bipedal model to a stable gait embedded in the chaotic attractor. Additionally, the ANN was capable of using hip joint actuations to accommodate unstable environments and to overcome unforeseen perturbations. Our simulations provide insight on the advantage of having a chaotic locomotive system and provide evidence as to how chaos can be used as an advantageous control scheme for the nervous system.


Journal of the American Podiatric Medical Association | 2004

Does footwear affect ankle coordination strategies

Max J. Kurz; Nicholas Stergiou

The hypothesis of this study was that shoe hardness and footwear affect ankle coordinative strategies during the running stance period. Subjects ran at a self-selected pace under three conditions-barefoot, wearing a hard shoe, and wearing a soft shoe-while sagittal and frontal view kinematic data were collected. Dynamic systems theory tools were used to explore ankle coordinative strategies under the three conditions. No significant differences in coordination were found between the two shoe conditions. However, significant differences in ankle coordinative strategies existed between the shoe conditions and the barefoot condition. Changes in coordinative strategies may be related to different mechanisms to attenuate impact forces while running barefoot.


Gait & Posture | 2003

The spanning set indicates that variability during the stance period of running is affected by footwear

Max J. Kurz; Nicholas Stergiou

Sensory information the foot receives appears to be related to kinematic variability. Since footwear material densities affect sensory information, footwear may be an important factor that dictates variability. This study hypothesized that modifications in footwear would result in changes in kinematic variability during the running stance period. Subjects ran on a treadmill for three conditions: hard shoe, soft shoe and barefoot. The spanning sets of the mean ensemble curves of the knee and ankle changes for each condition were used to define variability. Variability was significantly larger in the barefoot condition in comparison with the two footwear conditions for both joints. These results suggest that variability can be affected by peripheral sensory information. The spanning set methodology can be utilized to examine changes in variability.

Collaboration


Dive into the Max J. Kurz's collaboration.

Top Co-Authors

Avatar

Nicholas Stergiou

University of Nebraska Omaha

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Arpin

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne Stuberg

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen G. Volkman

American Physical Therapy Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony W. Wilson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yuen-Sum Lau

University of Missouri–Kansas City

View shared research outputs
Researchain Logo
Decentralizing Knowledge