Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Max L. Fletcher is active.

Publication


Featured researches published by Max L. Fletcher.


Learning & Memory | 2010

Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation

Max L. Fletcher; Wei R. Chen

The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of plasticity. As in other sensory systems, this plasticity can be controlled by centrifugal inputs from brain regions known to be involved in attention and learning processes. Specifically, both the bulb and cortex receive heavy inputs from cholinergic, noradrenergic, and serotonergic modulatory systems. These neuromodulators are shown to have profound effects on both odor processing and odor memory by acting on both inhibitory local interneurons and output neurons in both regions.


Nature Communications | 2014

Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration

J. Ito; Snigdha Roy; Y. Liu; Ying Cao; Max L. Fletcher; Lu Lu; J.D. Boughter; Sonja Grün; D.H. Heck

Current evidence suggests that delta oscillations (0.5–4 Hz) in the brain are generated by intrinsic network mechanisms involving cortical and thalamic circuits. Here we report that delta band oscillation in spike and local field potential (LFP) activity in the whisker barrel cortex of awake mice is phase locked to respiration. Furthermore, LFP oscillations in the gamma frequency band (30–80 Hz) are amplitude modulated in phase with the respiratory rhythm. Removal of the olfactory bulb eliminates respiration-locked delta oscillations and delta-gamma phase-amplitude coupling. Our findings thus suggest respiration-locked olfactory bulb activity as a main driving force behind delta oscillations and gamma power modulation in the whisker barrel cortex in the awake state.


The Journal of Neuroscience | 2005

High-Frequency Oscillations Are Not Necessary for Simple Olfactory Discriminations in Young Rats

Max L. Fletcher; Abigail M. Smith; Aaron R. Best; Donald A. Wilson

Individual olfactory bulb mitral/tufted cells respond preferentially to groups of molecularly similar odorants. Bulbar interneurons such as periglomerular and granule cells are thought to influence mitral/tufted odorant receptive fields through mechanisms such as lateral inhibition. The mitralgranule cell circuit is also important in the generation of the odor-evoked fast oscillations seen in the olfactory bulb local field potentials and hypothesized to be an important indicator of odor quality coding. Infant rats, however, lack a majority of these inhibitory interneurons until the second week of life. It is unclear if these developmental differences affect olfactory bulb odor coding or behavioral odor discrimination. The following experiments are aimed at better understanding odor coding and behavioral odor discrimination in the developing olfactory system. Single-unit recordings from mitral/tufted cells and local field-potential recordings from both the olfactory bulb and anterior piriform cortex were performed in freely breathing urethane-anesthetized rats (postnatal day 7 to adult). Age-dependent behavioral odor discrimination to a homologous series of ethyl esters was also examined using a cross-habituation paradigm. Odorants were equated in all experiments for concentration (150 ppm) using a flow dilution olfactometer. In concordance with the reduced interneuron population, local field potentials in neonates lacked detectable odor-evoked γ-frequency oscillations that were observed in mature animals. However, mitral/tufted cell odorant receptive fields and behavioral odor discrimination did not significantly change, despite known substantial changes in local circuitry and neuronal populations, over the age range examined. The results suggest that high-frequency local field-potential oscillations do not reflect processes critical for simple odor discrimination.


Learning & Memory | 2013

Neuronal nitric-oxide synthase deficiency impairs the long-term memory of olfactory fear learning and increases odor generalization.

Eloisa Pavesi; Scott A. Heldt; Max L. Fletcher

Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice lacking nNOS received six training trials, each consisting of an odor-CS co-terminating with a foot shock-US. Mice showed reduced freezing responses to the trained odor 24 h and 7 d after training, compared to wild-type mice. Pretraining systemic injections of the NO donor, molsidomine, rescued fear retention in nNOS knockout mice. In wild-type mice, pretraining systemic injections of L-NAME, a nonspecific nNOS blocker, disrupted odor-CS fear retention in a dose-dependent manner. To evaluate whether NO signaling is involved in generalization of fear memories, nNOS knockout mice and wild-type mice receiving L-NAME were trained to one odor and tested with a series of similar odors. In both cases, we found increased generalization, as measured by increased freezing to similar, unpaired odors. Despite the impairment in fear memory retention and generalization, neither mice receiving injections of L-NAME nor nNOS knockout mice showed any deficits in either novel odor investigation time or odor habituation, suggesting intact olfactory perception and short-term memory olfactory learning. These results support a necessary role for neuronal NO signaling in the normal expression and generalization of olfactory conditioned fear.


Scientific Reports | 2016

Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity

Mounir Bendahmane; M. Cameron Ogg; Matthew Ennis; Max L. Fletcher

The glomerular layer of the olfactory bulb (OB) receives heavy cholinergic input from the horizontal limb of the diagonal band of Broca (HDB) and expresses both muscarinic and nicotinic acetylcholine (ACh) receptors. However, the effects of ACh on OB glomerular odor responses remain unknown. Using calcium imaging in transgenic mice expressing the calcium indicator GCaMP2 in the mitral/tufted cells, we investigated the effect of ACh on the glomerular responses to increasing odor concentrations. Using HDB electrical stimulation and in vivo pharmacology, we find that increased OB ACh leads to dynamic, activity-dependent bi-directional modulation of glomerular odor response due to the combinatorial effects of both muscarinic and nicotinic activation. Using pharmacological manipulation to reveal the individual receptor type contributions, we find that m2 muscarinic receptor activation increases glomerular sensitivity to weak odor input whereas nicotinic receptor activation decreases sensitivity to strong input. Overall, we found that ACh in the OB increases glomerular sensitivity to odors and decreases activation thresholds. This effect, along with the decreased responses to strong odor input, reduces the response intensity range of individual glomeruli to increasing concentration making them more similar across the entire concentration range. As a result, odor representations are more similar as concentration increases.


Learning & Memory | 2012

Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice.

Eloisa Pavesi; Allison Gooch; Elizabeth Lee; Max L. Fletcher

We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly reduced freezing. To test whether cholinergic manipulation affected fear generalization, mice were presented with odors similar to the trained odor. Generalization was increased following pretraining scopolamine, while the muscarinic agonist oxotremorine decreased generalization. These results suggest that muscarinic neurotransmission during the acquisition of olfactory association modulates both the strength and specificity of learning.


Journal of Neuroscience Methods | 2016

Minimally invasive highly precise monitoring of respiratory rhythm in the mouse using an epithelial temperature probe.

Samuel S. McAfee; Mary Cameron Ogg; Jordan M. Ross; Yu Liu; Max L. Fletcher; Detlef H. Heck

BACKGROUND Respiration is one of the essential rhythms of life. The precise measurement of respiratory behavior is of great importance in studies addressing olfactory sensory processing or the coordination of orofacial movements with respiration. An ideal method of measurement should reliably capture the distinct phases of respiration without interfering with behavior. NEW METHOD This new method involves chronic implantation of a thermistor probe in a previously undescribed hollow space located above the anterior portion of the nasal cavity without penetrating any soft epithelial tissues. RESULTS We demonstrate the reliability and precision of the method in head-fixed and freely moving mice by directly comparing recorded signals with simultaneous measurements of chest movements and plethysmographic measurements of respiration. COMPARISON WITH EXISTING METHODS Current methods have drawbacks in that they are either inaccurate or require invasive placement of temperature or pressure sensors into the sensitive nasal cavity, where they interfere with airflow and cause irritation and damage to the nasal epithelium. Furthermore, surgical placement within the posterior nasal cavity adjacent to the nasal epithelium requires extensive recovery time, which is not necessary with the described method. CONCLUSIONS Here, we describe a new method for recording the rhythm of respiration in awake mice with high precision, without damaging or irritating the nasal epithelium. This method will be effective for measurement of respiration during experiments requiring free movement, as well as those involving imaging or electrophysiology.


The Journal of Neuroscience | 2017

Overlapping Representation of Primary Tastes in a Defined Region of the Gustatory Cortex

Max L. Fletcher; M. Cameron Ogg; Lianyi Lu; Robert J. Ogg; John D. Boughter

Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region. SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.


Frontiers in Molecular Neuroscience | 2015

Habituation of glomerular responses in the olfactory bulb following prolonged odor stimulation reflects reduced peripheral input

Mary Cameron Ogg; Mounir Bendahamane; Max L. Fletcher

Following prolonged odor stimulation, output from olfactory bulb (OB) mitral/tufted (M/T) cells is decreased in response to subsequent olfactory stimulation. Currently, it is unclear if this decrease is a function of adaptation of peripheral olfactory sensory neuron (OSN) responses or reflects depression of bulb circuits. We used wide-field calcium imaging in anesthetized transgenic GCaMP2 mice to compare excitatory glomerular layer odor responses before and after a 30-s odor stimulation. Significant habituation of subsequent glomerular odor responses to both the same and structurally similar odorants was detected with our protocol. To test whether depression of OSN terminals contributed to this habituation, olfactory nerve layer (ON) stimulation was used to drive glomerular layer responses in the absence of peripheral odor activation of the OSNs. Following odor habituation, in contrast to odor-evoked glomerular responses, ON stimulation-evoked glomerular responses were not habituated. The difference in response between odor and electrical stimulation following odor habituation provides evidence that odor response reductions measured in the glomerular layer of the OB are most likely the result of OSN adaptation processes taking place in the periphery.


Progress in Brain Research | 2014

Visualizing olfactory learning functional imaging of experience-induced olfactory bulb changes.

Max L. Fletcher; Mounir Bendahmane

The anatomical organization of sensory neuron input allows odor information to be transformed into odorant-specific spatial maps of mitral/tufted cell glomerular activity. In other sensory systems, neuronal representations of sensory stimuli can be reorganized or enhanced following learning or experience. Similarly, several studies have demonstrated both structural and physiological experience-induced changes throughout the olfactory system. As experience-induced changes within this circuit likely serve as an initial site for odor memory formation, the olfactory bulb is an ideal site for optical imaging studies of olfactory learning, as they allow for the visualization of experience-induced changes in the glomerular circuit following learning and how these changes impact of odor representations with the bulb. Presently, optical imaging techniques have been used to visualize experience-induced changes in glomerular odor representations in a variety of paradigms in short-term habituation, chronic odor exposure, and olfactory associative conditioning.

Collaboration


Dive into the Max L. Fletcher's collaboration.

Top Co-Authors

Avatar

Jordan M. Ross

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

M. Cameron Ogg

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Mounir Bendahmane

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Shin Nagayama

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eloisa Pavesi

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Mary Cameron Ogg

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge