Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Max O. Wiedorn is active.

Publication


Featured researches published by Max O. Wiedorn.


Nature | 2017

Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.

Jason R. Stagno; Yongmei Liu; Y. R. Bhandari; Chelsie E. Conrad; S. Panja; M. Swain; L. Fan; Garrett Nelson; Chufeng Li; D. R. Wendel; Thomas A. White; Jesse Coe; Max O. Wiedorn; Juraj Knoška; Dominik Oberthuer; R. A. Tuckey; P. Yu; M. Dyba; Sergey G. Tarasov; Uwe Weierstall; Thomas D. Grant; Charles D. Schwieters; Junmei Zhang; Adrian R. Ferré-D'Amaré; Petra Fromme; D. E. Draper; Mengning Liang; Mark S. Hunter; Sébastien Boutet; K. Tan

Riboswitches are structural RNA elements that are generally located in the 5′ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.


Scientific Reports | 2017

Double-flow focused liquid injector for efficient serial femtosecond crystallography.

Dominik Oberthuer; Juraj Knoška; Max O. Wiedorn; Kenneth R. Beyerlein; David A. Bushnell; Elena G. Kovaleva; Michael Heymann; Lars Gumprecht; Richard A. Kirian; Anton Barty; Valerio Mariani; Aleksandra Tolstikova; Luigi Adriano; Salah Awel; Miriam Barthelmess; Katerina Dörner; P. Lourdu Xavier; Oleksandr Yefanov; Daniel James; Garrett Nelson; Dingjie Wang; George Calvey; Yujie Chen; Andrea Schmidt; Michael Szczepek; Stefan Frielingsdorf; Oliver Lenz; Edward H. Snell; Philip J. J. Robinson; Božidar Šarler

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.


Scientific Data | 2016

Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

Anna Munke; Jakob Andreasson; Andrew Aquila; Salah Awel; Kartik Ayyer; Anton Barty; Richard Bean; Peter Berntsen; Johan Bielecki; Sébastien Boutet; Maximilian Bucher; Henry N. Chapman; Benedikt J. Daurer; Hasan Demirci; Veit Elser; Petra Fromme; Janos Hajdu; Max F. Hantke; Akifumi Higashiura; Brenda G. Hogue; Ahmad Hosseinizadeh; Yoonhee Kim; Richard A. Kirian; Hemanth K. N. Reddy; Ti Yen Lan; Daniel S. D. Larsson; Haiguang Liu; N. Duane Loh; Filipe R. N. C. Maia; Adrian P. Mancuso

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.


Structural Dynamics | 2017

Structural enzymology using X-ray free electron lasers

Christopher Kupitz; Jose L. Olmos; Mark R. Holl; Lee Tremblay; Kanupriya Pande; Suraj Pandey; Dominik Oberthür; Mark S. Hunter; Mengning Liang; Andrew Aquila; Jason Tenboer; George Calvey; Andrea M. Katz; Yujie Chen; Max O. Wiedorn; Juraj Knoška; Alke Meents; Valerio Majriani; Tyler Norwood; Ishwor Poudyal; Thomas D. Grant; Mitchell D. Miller; Weijun Xu; Aleksandra Tolstikova; Andrew J. Morgan; Markus Metz; Jose M. Martin-Garcia; James Zook; Shatabdi Roy-Chowdhury; Jesse Coe

Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.


Structural Dynamics | 2015

Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers

Richard A. Kirian; Salah Awel; Niko Eckerskorn; Holger Fleckenstein; Max O. Wiedorn; Luigi Adriano; Sasa Bajt; Miriam Barthelmess; Richard Bean; Kenneth R. Beyerlein; Leonard M. G. Chavas; M. Domaracky; Michael Heymann; Daniel A. Horke; Juraj Knoška; Markus Metz; Andrew J. Morgan; Dominik Oberthuer; Nils Roth; T. Sato; Paulraj Lourdu Xavier; Oleksandr Yefanov; Andrei Rode; Jochen Küpper; Henry N. Chapman

A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can be focused to a full-width at half maximum diameter of 4.2 μm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam.


IUCrJ | 2017

Mix-and-diffuse serial synchrotron crystallography

Kenneth R. Beyerlein; Dennis Dierksmeyer; Valerio Mariani; Manuela Kuhn; Iosifina Sarrou; Angelica Ottaviano; Salah Awel; Juraj Knoška; Silje Skeide Fuglerud; O Jonsson; Stephan Stern; Max O. Wiedorn; Oleksandr Yefanov; Luigi Adriano; Richard Bean; Anja Burkhardt; Pontus Fischer; Michael Heymann; Daniel A. Horke; Katharina E.J. Jungnickel; Elena G. Kovaleva; Olga Lorbeer; Markus Metz; Jan Meyer; Andrew J. Morgan; Kanupriya Pande; Saravanan Panneerselvam; Carolin Seuring; Aleksandra Tolstikova; Julia Lieske

The structure of chitotriose bound to lysozyme after mixing times of 2 and 50 s was determined using a polyimide tape-drive device for mix-and-diffuse serial crystallography at a synchrotron light source.


Optics Express | 2016

Visualizing aerosol-particle injection for diffractive-imaging experiments.

Salah Awel; Richard A. Kirian; Niko Eckerskorn; Max O. Wiedorn; Daniel A. Horke; Andrei Rode; Jochen Küpper; Henry N. Chapman

Delivering sub-micrometer particles to an intense x-ray focus is a crucial aspect of single-particle diffractive-imaging experiments at x-ray free-electron lasers. Enabling direct visualization of sub-micrometer aerosol particle streams without interfering with the operation of the particle injector can greatly improve the overall efficiency of single-particle imaging experiments by reducing the amount of time and sample consumed during measurements. We have developed in-situ non-destructive imaging diagnostics to aid real-time particle injector optimization and x-ray/particle-beam alignment, based on laser illumination schemes and fast imaging detectors. Our diagnostics are constructed to provide a non-invasive rapid feedback on injector performance during measurements, and have been demonstrated during diffraction measurements at the FLASH free-electron laser.


Nature Communications | 2017

Pink-beam serial crystallography.

Alke Meents; Max O. Wiedorn; Vukica Šrajer; Robert Henning; Iosifina Sarrou; J. Bergtholdt; Miriam Barthelmess; P. Y. A. Reinke; D. Dierksmeyer; Alexandra Tolstikova; S. Schaible; M. Messerschmidt; C. M. Ogata; D. J. Kissick; Manuel H. Taft; Dietmar J. Manstein; J. Lieske; Dominik Oberthuer; R. F. Fischetti; Henry N. Chapman

Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized for very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.Serial X-ray crystallography (SX) is used for data collection at X-ray Free Electron Lasers. Here the authors show that a polychromatic “pink” synchrotron X-ray beam can be used for SX, which is useful when crystal supply is limited and will allow time-resolved measurements at synchrotron sources in the future.


IUCrJ | 2017

Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses

Benedikt J. Daurer; Kenta Okamoto; Johan Bielecki; Filipe R. N. C. Maia; Kerstin Mühlig; M. Marvin Seibert; Max F. Hantke; Carl Nettelblad; W. Henry Benner; Martin Svenda; Nicusor Timneanu; Tomas Ekeberg; N. Duane Loh; Alberto Pietrini; Alessandro Zani; Asawari D. Rath; Daniel Westphal; Richard A. Kirian; Salah Awel; Max O. Wiedorn; Gijs van der Schot; Gunilla H. Carlsson; Dirk Hasse; Jonas A. Sellberg; Anton Barty; Jakob Andreasson; Sebastian Boutet; Garth J. Williams; Jason E. Koglin; Inger Andersson

Facilitating the very short and intense pulses from an X-ray laser for the purpose of imaging small bioparticles carries the potential for structure determination at atomic resolution without the need for crystallization. In this study, experimental strategies for this idea are explored based on data collected at the Linac Coherent Light Source from 40 nm virus particles injected into a hard X-ray beam.


Journal of Applied Crystallography | 2018

Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals

Salah Awel; Richard A. Kirian; Max O. Wiedorn; Kenneth R. Beyerlein; Nils Roth; Daniel A. Horke; Dominik Oberthür; Juraj Knoška; Valerio Mariani; Andrew J. Morgan; Luigi Adriano; Alexandra Tolstikova; P. Lourdu Xavier; Oleksandr Yefanov; Andrew Aquila; Anton Barty; Shatabdi Roy-Chowdhury; Mark S. Hunter; Daniel James; Uwe Weierstall; Andrei Rode; Sasa Bajt; Jochen Küpper; Henry N. Chapman

A new particle-injection approach is demonstrated that achieves very low background in the measurement of diffraction from macromolecular nanocrystals by using an aerosol-focusing injector with an X-ray free-electron laser.

Collaboration


Dive into the Max O. Wiedorn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Barty

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth R. Beyerlein

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge