Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Max Schubach is active.

Publication


Featured researches published by Max Schubach.


Epilepsia | 2012

Targeted next generation sequencing as a diagnostic tool in epileptic disorders

Johannes R. Lemke; Erik Riesch; Tim Scheurenbrand; Max Schubach; Christian Wilhelm; Isabelle Steiner; Jörg Hansen; Carolina Courage; Sabina Gallati; Sarah Bürki; Susi Strozzi; Barbara Goeggel Simonetti; Sebastian Grunt; Maja Steinlin; Michael Alber; Markus Wolff; Thomas Klopstock; Eva C. Prott; Rüdiger Lorenz; Christiane Spaich; Sabine Rona; Maya Lakshminarasimhan; Judith Kröll; Thomas Dorn; Günter Krämer; Matthis Synofzik; Felicitas Becker; Yvonne G. Weber; Holger Lerche; Detlef Böhm

Purpose:  Epilepsies have a highly heterogeneous background with a strong genetic contribution. The variety of unspecific and overlapping syndromic and nonsyndromic phenotypes often hampers a clear clinical diagnosis and prevents straightforward genetic testing. Knowing the genetic basis of a patient’s epilepsy can be valuable not only for diagnosis but also for guiding treatment and estimating recurrence risks.


European Journal of Human Genetics | 2014

Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies.

Nicola Glöckle; Susanne Kohl; Julia Mohr; Tim Scheurenbrand; Andrea Sprecher; Nicole Weisschuh; Antje Bernd; Günther Rudolph; Max Schubach; Charlotte M. Poloschek; Eberhart Zrenner; Saskia Biskup; Wolfgang Berger; Bernd Wissinger; John Neidhardt

Hereditary retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different forms of RD can be caused by mutations in >100 genes, including >1600 exons. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. So far, NGS is not routinely used in gene diagnostics. We developed a diagnostic NGS pipeline to identify mutations in 170 genetically and clinically unselected RD patients. NGS was applied to 105 RD-associated genes. Underrepresented regions were examined by Sanger sequencing. The NGS approach was successfully established using cases with known sequence alterations. Depending on the initial clinical diagnosis, we identified likely causative mutations in 55% of retinitis pigmentosa and 80% of Bardet–Biedl or Usher syndrome cases. Seventy-one novel mutations in 40 genes were newly associated with RD. The genes USH2A, EYS, ABCA4, and RHO were more frequently affected than others. Occasionally, cases carried mutations in more than one RD-associated gene. In addition, we found possible dominant de-novo mutations in cases with sporadic RD, which implies consequences for counseling of patients and families. NGS-based mutation analyses are reliable and cost-efficient approaches in gene diagnostics of genetically heterogeneous diseases like RD.


Nature Protocols | 2015

Next-generation diagnostics and disease-gene discovery with the Exomiser

Damian Smedley; Julius Jacobsen; Marten Jäger; Sebastian Köhler; Manuel Holtgrewe; Max Schubach; Enrico Siragusa; Tomasz Zemojtel; Orion J. Buske; Nicole L. Washington; William P. Bone; Melissa Haendel; Peter N. Robinson

Exomiser is an application that prioritizes genes and variants in next-generation sequencing (NGS) projects for novel disease-gene discovery or differential diagnostics of Mendelian disease. Exomiser comprises a suite of algorithms for prioritizing exome sequences using random-walk analysis of protein interaction networks, clinical relevance and cross-species phenotype comparisons, as well as a wide range of other computational filters for variant frequency, predicted pathogenicity and pedigree analysis. In this protocol, we provide a detailed explanation of how to install Exomiser and use it to prioritize exome sequences in a number of scenarios. Exomiser requires ∼3 GB of RAM and roughly 15–90 s of computing time on a standard desktop computer to analyze a variant call format (VCF) file. Exomiser is freely available for academic use from http://www.sanger.ac.uk/science/tools/exomiser.


European Journal of Human Genetics | 2014

Further delineation of the SATB2 phenotype

Dennis Döcker; Max Schubach; Moritz Menzel; Marita Munz; Christiane Spaich; Saskia Biskup; Deborah Bartholdi

SATB2 is an evolutionarily highly conserved chromatin remodeling gene located on chromosome 2q33.1. Vertebrate animal models have shown that Satb2 has a crucial role in craniofacial patterning and osteoblast differentiation, as well as in determining the fates of neuronal projections in the developing neocortex. In humans, chromosomal translocations and deletions of 2q33.1 leading to SATB2 haploinsufficiency are associated with cleft palate (CP), facial dysmorphism and intellectual disability (ID). A single patient carrying a nonsense mutation in SATB2 has been described to date. In this study, we performed trio-exome sequencing in a 3-year-old girl with CP and severely delayed speech development, and her unaffected parents. Previously, the girl had undergone conventional and molecular karyotyping (microarray analysis), as well as targeted analysis for different diseases associated with developmental delay, including Angelman syndrome, Rett syndrome and Fragile X syndrome. No diagnosis could be established. Exome sequencing revealed a de novo nonsense mutation in the SATB2 gene (c.715C>T; p.R239*). The identification of a second patient carrying a de novo nonsense mutation in SATB2 confirms that this gene is essential for normal craniofacial patterning and cognitive development. Based on our data and the literature published so far, we propose a new clinically recognizable syndrome – the SATB2-associated syndrome (SAS). SAS is likely to be underdiagnosed and should be considered in children with ID, severe speech delay, cleft or high-arched palate and abnormal dentition with crowded and irregularly shaped teeth.


PLOS ONE | 2016

Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing.

Nicole Weisschuh; Anja Kathrin Mayer; Tim M. Strom; Susanne Kohl; Nicola Glöckle; Max Schubach; Sten Andréasson; Antje Bernd; David G. Birch; Christian P. Hamel; John R. Heckenlively; Samuel G. Jacobson; Christina Kamme; Ulrich Kellner; Erdmute Kunstmann; Pietro Maffei; Charlotte M. Reiff; Klaus Rohrschneider; Thomas Rosenberg; Günther Rudolph; Rita Vámos; Balázs Varsányi; Richard G. Weleber; Bernd Wissinger

Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.


Mitochondrion | 2015

From ventriculomegaly to severe muscular atrophy: Expansion of the clinical spectrum related to mutations in AIFM1

Matthias Kettwig; Max Schubach; Franz A. Zimmermann; Lars Klinge; Johannes A. Mayr; Saskia Biskup; Wolfgang Sperl; Jutta Gärtner; Peter Huppke

The apoptosis-inducing factor (AIF) functions as a FAD-dependent NADH oxidase in mitochondria. Upon apoptotic stimulation it is released from mitochondria and migrates to the nucleus where it induces chromatin condensation and DNA fragmentation. So far mutations in AIFM1, a X-chromosomal gene coding for AIF, have been described in three families with 11 affected males. We report here on a further patient thereby expanding the clinical and mutation spectrum. In addition, we review the known phenotypes related to AIFM1 mutations. The clinical course in the male patient described here was characterized by phases with rapid deterioration and long phases without obvious progression of disease. At age 2.5 years he developed hearing loss and severe ataxia and at age 10 years muscle wasting, swallowing difficulties, respiratory insufficiency and external opthamoplegia. By next generation sequencing of whole exome we identified a hemizygous missense mutation in the AIFM1 gene, c.727G>T (p.Val243Leu) affecting a highly conserved residue in the FAD-binding domain. Summarizing what is known today, mutations in AIFM1 are associated with a progressive disorder with myopathy, ataxia and neuropathy. Severity varies greatly even within one family with onset of symptoms between birth and adolescence. 3 of 12 patients died before age 5 years while others were still able to walk during young adulthood. Less frequent symptoms were hearing loss, seizures and psychomotor regression. Results from clinical chemistry, brain imaging and muscle biopsy were unspecific and inconsistent.


Human Mutation | 2016

Strømme Syndrome Is a Ciliary Disorder Caused by Mutations in CENPF.

Isabel Filges; Elisabeth Bruder; Kristin Brandal; Stephanie Meier; Dag E. Undlien; Trine Rygvold Waage; Irene Hoesli; Max Schubach; Tjaart de Beer; Ying Sheng; Sylvia Hoeller; Sven M. Schulzke; Oddveig Røsby; Peter Miny; Sevgi Tercanli; Truls Oppedal; Peter Meyer; Kaja Kristine Selmer; Petter Strømme

Strømme syndrome was first described by Strømme et al. (1993) in siblings presenting with “apple peel” type intestinal atresia, ocular anomalies and microcephaly. The etiology remains unknown to date. We describe the long‐term clinical follow‐up data for the original pair of siblings as well as two previously unreported siblings with a severe phenotype overlapping that of the Strømme syndrome including fetal autopsy results. Using family‐based whole‐exome sequencing, we identified truncating mutations in the centrosome gene CENPF in the two nonconsanguineous Caucasian sibling pairs. Compound heterozygous inheritance was confirmed in both families. Recently, mutations in this gene were shown to cause a fetal lethal phenotype, the phenotype and functional data being compatible with a human ciliopathy [Waters et al., ]. We show for the first time that Strømme syndrome is an autosomal‐recessive disease caused by mutations in CENPF that can result in a wide phenotypic spectrum.


European Journal of Human Genetics | 2016

Loss-of-function variants in HIVEP2 are a cause of intellectual disability

Siddharth Srivastava; Hartmut Engels; Ina Schanze; Kirsten Cremer; Thomas Wieland; Moritz Menzel; Max Schubach; Saskia Biskup; Martina Kreiß; Sabine Endele; Tim M. Strom; Dagmar Wieczorek; Martin Zenker; Siddharth Gupta; Julie S. Cohen; Alexander M. Zink; Sakkubai Naidu

Intellectual disability (ID) affects 2–3% of the population. In the past, many genetic causes of ID remained unidentified due to its vast heterogeneity. Recently, whole exome sequencing (WES) studies have shown that de novo variants underlie a significant portion of sporadic cases of ID. Applying WES to patients with ID or global developmental delay at different centers, we identified three individuals with distinct de novo variants in HIVEP2 (human immunodeficiency virus type I enhancer binding protein), which belongs to a family of zinc-finger-containing transcriptional proteins involved in growth and development. Two of the variants were nonsense changes, and one was a 1 bp deletion resulting in a premature stop codon that was reported previously without clinical detail. In silico prediction programs suggest loss-of-function in the mutated allele leading to haploinsufficiency as a putative mechanism in all three individuals. All three patients presented with moderate-to-severe ID, minimal structural brain anomalies, hypotonia, and mild dysmorphic features. Growth parameters were in the normal range except for borderline microcephaly at birth in one patient. Two of the patients exhibited behavioral anomalies including hyperactivity and aggression. Published functional data suggest a neurodevelopmental role for HIVEP2, and several of the genes regulated by HIVEP2 are implicated in brain development, for example, SSTR-2, c-Myc, and genes of the NF-κB pathway. In addition, HIVEP2-knockout mice exhibit several working memory deficits, increased anxiety, and hyperactivity. On the basis of the genotype–phenotype correlation and existing functional data, we propose HIVEP2 as a causative ID gene.


Genome Medicine | 2018

Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis

Alexej Knaus; Jean Tori Pantel; Manuela Pendziwiat; Nurulhuda Hajjir; Max Zhao; Tzung Chien Hsieh; Max Schubach; Yaron Gurovich; Nicole Fleischer; Marten Jäger; Sebastian Köhler; Hiltrud Muhle; Christian Korff; Rikke S. Møller; Allan Bayat; Patrick Calvas; Nicolas Chassaing; Hannah Warren; Steven Skinner; Raymond J. Louie; Christina Evers; Marc Bohn; Hans Jürgen Christen; Myrthe van den Born; Ewa Obersztyn; Agnieszka Charzewska; Milda Endziniene; Fanny Kortüm; Natasha J Brown; Peter N. Robinson

BackgroundGlycosylphosphatidylinositol biosynthesis defects (GPIBDs) cause a group of phenotypically overlapping recessive syndromes with intellectual disability, for which pathogenic mutations have been described in 16 genes of the corresponding molecular pathway. An elevated serum activity of alkaline phosphatase (AP), a GPI-linked enzyme, has been used to assign GPIBDs to the phenotypic series of hyperphosphatasia with mental retardation syndrome (HPMRS) and to distinguish them from another subset of GPIBDs, termed multiple congenital anomalies hypotonia seizures syndrome (MCAHS). However, the increasing number of individuals with a GPIBD shows that hyperphosphatasia is a variable feature that is not ideal for a clinical classification.MethodsWe studied the discriminatory power of multiple GPI-linked substrates that were assessed by flow cytometry in blood cells and fibroblasts of 39 and 14 individuals with a GPIBD, respectively. On the phenotypic level, we evaluated the frequency of occurrence of clinical symptoms and analyzed the performance of computer-assisted image analysis of the facial gestalt in 91 individuals.ResultsWe found that certain malformations such as Morbus Hirschsprung and diaphragmatic defects are more likely to be associated with particular gene defects (PIGV, PGAP3, PIGN). However, especially at the severe end of the clinical spectrum of HPMRS, there is a high phenotypic overlap with MCAHS. Elevation of AP has also been documented in some of the individuals with MCAHS, namely those with PIGA mutations. Although the impairment of GPI-linked substrates is supposed to play the key role in the pathophysiology of GPIBDs, we could not observe gene-specific profiles for flow cytometric markers or a correlation between their cell surface levels and the severity of the phenotype. In contrast, it was facial recognition software that achieved the highest accuracy in predicting the disease-causing gene in a GPIBD.ConclusionsDue to the overlapping clinical spectrum of both HPMRS and MCAHS in the majority of affected individuals, the elevation of AP and the reduced surface levels of GPI-linked markers in both groups, a common classification as GPIBDs is recommended. The effectiveness of computer-assisted gestalt analysis for the correct gene inference in a GPIBD and probably beyond is remarkable and illustrates how the information contained in human faces is pivotal in the delineation of genetic entities.


European Journal of Human Genetics | 2015

Germline PTPN11 and somatic PIK3CA variant in a boy with megalencephaly-capillary malformation syndrome (MCAP)--pure coincidence?

Dennis Döcker; Max Schubach; Moritz Menzel; Christiane Spaich; Heinz-Dieter Gabriel; Martin Zenker; Deborah Bartholdi; Saskia Biskup

Megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth syndrome that is diagnosed by clinical criteria. Recently, somatic and germline variants in genes that are involved in the PI3K-AKT pathway (AKT3, PIK3R2 and PIK3CA) have been described to be associated with MCAP and/or other related megalencephaly syndromes. We performed trio-exome sequencing in a 6-year-old boy and his healthy parents. Clinical features were macrocephaly, cutis marmorata, angiomata, asymmetric overgrowth, developmental delay, discrete midline facial nevus flammeus, toe syndactyly and postaxial polydactyly—thus, clearly an MCAP phenotype. Exome sequencing revealed a pathogenic de novo germline variant in the PTPN11 gene (c.1529A>G; p.(Gln510Arg)), which has so far been associated with Noonan, as well as LEOPARD syndrome. Whole-exome sequencing (>100 × coverage) did not reveal any alteration in the known megalencephaly genes. However, ultra-deep sequencing results from saliva (>1000 × coverage) revealed a 22% mosaic variant in PIK3CA (c.2740G>A; p.(Gly914Arg)). To our knowledge, this report is the first description of a PTPN11 germline variant in an MCAP patient. Data from experimental studies show a complex interaction of SHP2 (gene product of PTPN11) and the PI3K-AKT pathway. We hypothesize that certain PTPN11 germline variants might drive toward additional second-hit alterations.

Collaboration


Dive into the Max Schubach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Courage

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge