Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Max Wai Kong Law is active.

Publication


Featured researches published by Max Wai Kong Law.


IEEE Transactions on Image Processing | 2009

Dominant Local Binary Patterns for Texture Classification

Shu Liao; Max Wai Kong Law; Albert Chi Shing Chung

This paper proposes a novel approach to extract image features for texture classification. The proposed features are robust to image rotation, less sensitive to histogram equalization and noise. It comprises of two sets of features: dominant local binary patterns (DLBP) in a texture image and the supplementary features extracted by using the circularly symmetric Gabor filter responses. The dominant local binary pattern method makes use of the most frequently occurred patterns to capture descriptive textural information, while the Gabor-based features aim at supplying additional global textural information to the DLBP features. Through experiments, the proposed approach has been intensively evaluated by applying a large number of classification tests to histogram-equalized, randomly rotated and noise corrupted images in Outex, Brodatz, Meastex, and CUReT texture image databases. Our method has also been compared with six published texture features in the experiments. It is experimentally demonstrated that the proposed method achieves the highest classification accuracy in various texture databases and image conditions.


european conference on computer vision | 2008

Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux

Max Wai Kong Law; Albert Chi Shing Chung

This paper proposes a novel curvilinear structure detector, called Optimally Oriented Flux (OOF). OOF finds an optimal axis on which image gradients are projected in order to compute the image gradient flux. The computation of OOF is localized at the boundaries of local spherical regions. It avoids considering closely located adjacent structures. The main advantage of OOF is its robustness against the disturbance induced by closely located adjacent objects. Moreover, the analytical formulation of OOF introduces no additional computation load as compared to the calculation of the Hessian matrix which is widely used for curvilinear structure detection. It is experimentally demonstrated that OOF delivers accurate and stable curvilinear structure detection responses under the interference of closely located adjacent structures as well as image noise.


Medical Image Analysis | 2013

Intervertebral disc segmentation in MR images using anisotropic oriented flux

Max Wai Kong Law; KengYeow Tay; Andrew Leung; Gregory J. Garvin; Shuo Li

This study proposes an unsupervised intervertebral disc segmentation system based on middle sagittal spine MR scans. The proposed system employs the novel anisotropic oriented flux detection scheme which helps distinguish the discs from the neighboring structures with similar intensity, recognize ambiguous disc boundaries, and handle the shape and intensity variation of the discs. Based on minimal user interaction, the proposed system begins with vertebral body tracking to infer the information regarding the positions and orientations of the target intervertebral discs. The information is employed in a set of image descriptors, which jointly constitute an energy functional describing the desired disc segmentation result. The energy functional is minimized by a level set based active contour model to perform disc segmentation. The proposed segmentation system is evaluated using a database consisting of 455 intervertebral discs extracted from 69 middle sagittal slices. It is demonstrated that the proposed method is capable of delivering accurate results for intervertebral disc segmentation.


IEEE Transactions on Medical Imaging | 2007

Weighted Local Variance-Based Edge Detection and Its Application to Vascular Segmentation in Magnetic Resonance Angiography

Max Wai Kong Law; Albert Chi Shing Chung

Accurate detection of vessel boundaries is particularly important for a precise extraction of vasculatures in magnetic resonance angiography (MRA). In this paper, we propose the use of weighted local variance (WLV)-based edge detection scheme for vessel boundary detection in MRA. The proposed method is robust against changes of intensity contrast of edges and capable of giving high detection responses on low contrast edges. These robustness and capabilities are essential for detecting the boundaries of vessels in low contrast regions of images, which can contain intensity inhomogeneity, such as bias field, interferences induced from other tissues, or fluctuation of the speed related vessel intensity. The performance of the WLV-based edge detection scheme is studied and shown to be able to return strong and consistent detection responses on low contrast edges in the experiments. The proposed edge detection scheme can be embedded naturally in the active contour models for vascular segmentation. The WLV-based vascular segmentation method is tested using MRA image volumes. It is experimentally shown that the WLV-based edge detection approach can achieve high-quality segmentation of vasculatures in MRA images.


IEEE Transactions on Image Processing | 2009

Efficient Implementation for Spherical Flux Computation and Its Application to Vascular Segmentation

Max Wai Kong Law; Albert Chi Shing Chung

Spherical flux is the flux inside a spherical region, and it is very useful in the analysis of tubular structures in magnetic resonance angiography and computed tomographic angiography. The conventional approach is to estimate the spherical flux in the spatial domain. Its running time depends on the sphere radius quadratically, which leads to very slow spherical flux computation when the sphere size is large. This paper proposes a more efficient implementation for spherical flux computation in the Fourier domain. Our implementation is based on the reformulation of the spherical flux calculation using the divergence theorem, spherical step function, and the convolution operation. With this reformulation, most of the calculations are performed in the Fourier domain. We show how to select the frequency subband so that the computation accuracy can be maintained. It is experimentally demonstrated that, using the synthetic and clinical phase contrast magnetic resonance angiographic volumes, our implementation is more computationally efficient than the conventional spatial implementation. The accuracies of our implementation and that of the conventional spatial implementation are comparable. Finally, the proposed implementation can definitely benefit the computation of the multiscale spherical flux with a set of radii because, unlike the conventional spatial implementation, the time complexity of the proposed implementation does not depend on the sphere radius.


IEEE Transactions on Medical Imaging | 2014

Regional Assessment of Cardiac Left Ventricular Myocardial Function via MRI Statistical Features

Mariam Afshin; Ismail Ben Ayed; Kumaradevan Punithakumar; Max Wai Kong Law; Ali Islam; Aashish Goela; Terry M. Peters; Shuo Li

Automating the detection and localization of segmental (regional) left ventricle (LV) abnormalities in magnetic resonance imaging (MRI) has recently sparked an impressive research effort, with promising performances and a breadth of techniques. However, despite such an effort, the problem is still acknowledged to be challenging, with much room for improvements in regard to accuracy. Furthermore, most of the existing techniques are labor intensive, requiring delineations of the endo- and/or epi-cardial boundaries in all frames of a cardiac sequence. The purpose of this study is to investigate a real-time machine-learning approach which uses some image features that can be easily computed, but that nevertheless correlate well with the segmental cardiac function. Starting from a minimum user input in only one frame in a subject dataset, we build for all the regional segments and all subsequent frames a set of statistical MRI features based on a measure of similarity between distributions. We demonstrate that, over a cardiac cycle, the statistical features are related to the proportion of blood within each segment. Therefore, they can characterize segmental contraction without the need for delineating the LV boundaries in all the frames. We first seek the optimal direction along which the proposed image features are most descriptive via a linear discriminant analysis. Then, using the results as inputs to a linear support vector machine classifier, we obtain an abnormality assessment of each of the standard cardiac segments in real-time. We report a comprehensive experimental evaluation of the proposed algorithm over 928 cardiac segments obtained from 58 subjects. Compared against ground-truth evaluations by experienced radiologists, the proposed algorithm performed competitively, with an overall classification accuracy of 86.09% and a kappa measure of 0.73.


european conference on computer vision | 2010

An oriented flux symmetry based active contour model for three dimensional vessel segmentation

Max Wai Kong Law; Albert Chi Shing Chung

This paper proposes a novel approach to segment three dimensional curvilinear structures, particularly vessels in angiography, by inspecting the symmetry of image gradients. The proposed method stresses the importance of simultaneously considering both the gradient symmetry with respect to the curvilinear structure center, and the gradient antisymmetry with respect to the object boundary. Measuring the image gradient symmetry remarkably suppresses the disturbance introduced by rapid intensity changes along curvilinear structures. Meanwhile, considering the image gradient antisymmetry helps locate the structure boundary. The gradient symmetry and the gradient antisymmetry are evaluated based on the notion of oriented flux. By utilizing the aforementioned gradient symmetry information, an active contour model is tailored to perform segmentation. On the one hand, by exploiting the symmetric image gradient pattern observed at structure centers, the contours expand along curvilinear structures even through there exists intensity fluctuation along the structures. On the other hand, measuring the antisymmetry of the image gradient conveys strong detection responses to precisely drive contours to the structure boundaries, as well as avoiding contour leakages. The proposed method is capable of delivering promising segmentation results. This is validated in the experiments using synthetic data and real vascular images of different modalities, and through the comparison to two well founded and published methods for curvilinear structure segmentation.


medical image computing and computer assisted intervention | 2009

A Deformable Surface Model for Vascular Segmentation

Max Wai Kong Law; Albert Chi Shing Chung

Inspired by the motion of a solid surface under liquid pressure, this paper proposes a novel deformable surface model to segment blood vessels in medical images. In the proposed model, the segmented region and the background region are respectively considered as liquid and an elastic solid. The surface of the elastic solid experiences various forces derived from the second order intensity statistics and the surface geometry. These forces cause the solid surface to deform in order to segment vascular structures in an image. The proposed model has been studied in the experiments on synthetic data and clinical data acquired by different imaging modalities. It is experimentally shown that the new model is robust to intensity contrast changes inside blood vessels and thus very suitable to perform vascular segmentation.


IEEE Transactions on Biomedical Engineering | 2013

Spine Image Fusion Via Graph Cuts

Brandon Miles; Ismail Ben Ayed; Max Wai Kong Law; Gregory J. Garvin; Aaron Fenster; Shuo Li

This study investigates a novel CT/MR spine image fusion algorithm based on graph cuts. This algorithm allows physicians to visually assess corresponding soft tissue and bony detail on a single image eliminating mental alignment and correlation needed when both CT and MR images are required for diagnosis. We state the problem as a discrete multilabel optimization of an energy functional that balances the contributions of three competing terms: (1) a squared error, which encourages the solution to be similar to the MR input, with a preference to strong MR edges; (2) a squared error, which encourages the solution to be similar to the CT input, with a preference to strong CT edges; and (3) a prior, which favors smooth solutions by encouraging neighboring pixels to have similar fused-image values. We further introduce a transparency-labeling formulation, which significantly reduces the computational load. The proposed graph-cut fusion guarantees nearly global solutions, while avoiding the pix elation artifacts that affect standard wavelet-based methods. We report several quantitative evaluations/comparisons over 40 pairs of CT/MR images acquired from 20 patients, which demonstrate a very competitive performance in comparisons to the existing methods. We further discuss various case studies, and give a representative sample of the results.


IEEE Transactions on Image Processing | 2013

Segmentation of Intracranial Vessels and Aneurysms in Phase Contrast Magnetic Resonance Angiography Using Multirange Filters and Local Variances

Max Wai Kong Law; Albert Chi Shing Chung

Segmentation of intensity varying and low-contrast structures is an extremely challenging and rewarding task. In computer-aided diagnosis of intracranial aneurysms, segmenting the high-intensity major vessels along with the attached low-contrast aneurysms is essential to the recognition of this lethal vascular disease. It is particularly helpful in performing early and noninvasive diagnosis of intracranial aneurysms using phase contrast magnetic resonance angiographic (PC-MRA) images. The major challenges of developing a PC-MRA-based segmentation method are the significantly varying voxel intensity inside vessels with different flow velocities and the signal loss in the aneurysmal regions where turbulent flows occur. This paper proposes a novel intensity-based algorithm to segment intracranial vessels and the attached aneurysms. The proposed method can handle intensity varying vasculatures and also the low-contrast aneurysmal regions affected by turbulent flows. It is grounded on the use of multirange filters and local variances to extract intensity-based image features for identifying contrast varying vasculatures. The extremely low-intensity region affected by turbulent flows is detected according to the topology of the structure detected by multirange filters and local variances. The proposed method is evaluated using a phantom image volume with an aneurysm and four clinical cases. It achieves 0.80 dice score in the phantom case. In addition, different components of the proposed method-the multirange filters, local variances, and topology-based detection-are evaluated in the comparison between the proposed method and its lower complexity variants. Owing to the analogy between these variants and existing vascular segmentation methods, this comparison also exemplifies the advantage of the proposed method over the existing approaches. It analyzes the weaknesses of these existing approaches and justifies the use of every component involved in the proposed method. It is shown that the proposed method is capable of segmenting blood vessels and the attached aneurysms on PC-MRA images.

Collaboration


Dive into the Max Wai Kong Law's collaboration.

Top Co-Authors

Avatar

Albert Chi Shing Chung

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Garvin

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Shu Liao

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Leung

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Ismail Ben Ayed

École de technologie supérieure

View shared research outputs
Top Co-Authors

Avatar

KengYeow Tay

London Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Aaron Fenster

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Aashish Goela

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Ali Islam

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge