Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Max Wintermark is active.

Publication


Featured researches published by Max Wintermark.


Stroke | 2013

Guidelines for the Early Management of Patients With Acute Ischemic Stroke A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

Edward C. Jauch; Jeffrey L. Saver; Harold P. Adams; Askiel Bruno; J. J Buddy Connors; Bart M. Demaerschalk; Pooja Khatri; Paul W. McMullan; Adnan I. Qureshi; Kenneth Rosenfield; Phillip A. Scott; Debbie Summers; David Wang; Max Wintermark; Howard Yonas

Background and Purpose— The authors present an overview of the current evidence and management recommendations for evaluation and treatment of adults with acute ischemic stroke. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators responsible for the care of acute ischemic stroke patients within the first 48 hours from stroke onset. These guidelines supersede the prior 2007 guidelines and 2009 updates. Methods— Members of the writing committee were appointed by the American Stroke Association Stroke Council’s Scientific Statement Oversight Committee, representing various areas of medical expertise. Strict adherence to the American Heart Association conflict of interest policy was maintained throughout the consensus process. Panel members were assigned topics relevant to their areas of expertise, reviewed the stroke literature with emphasis on publications since the prior guidelines, and drafted recommendations in accordance with the American Heart Association Stroke Council’s Level of Evidence grading algorithm. Results— The goal of these guidelines is to limit the morbidity and mortality associated with stroke. The guidelines support the overarching concept of stroke systems of care and detail aspects of stroke care from patient recognition; emergency medical services activation, transport, and triage; through the initial hours in the emergency department and stroke unit. The guideline discusses early stroke evaluation and general medical care, as well as ischemic stroke, specific interventions such as reperfusion strategies, and general physiological optimization for cerebral resuscitation. Conclusions— Because many of the recommendations are based on limited data, additional research on treatment of acute ischemic stroke remains urgently needed.


The New England Journal of Medicine | 2013

A Trial of Imaging Selection and Endovascular Treatment for Ischemic Stroke

Chelsea S. Kidwell; Reza Jahan; Jeffrey Gornbein; Jeffry R. Alger; Val Nenov; Zahra Ajani; Lei Feng; Brett C. Meyer; Scott Olson; Lee H. Schwamm; Albert J. Yoo; Randolph S. Marshall; Philip M. Meyers; Dileep R. Yavagal; Max Wintermark; Judy Guzy; Sidney Starkman; Jeffrey L. Saver

BACKGROUND Whether brain imaging can identify patients who are most likely to benefit from therapies for acute ischemic stroke and whether endovascular thrombectomy improves clinical outcomes in such patients remains unclear. METHODS In this study, we randomly assigned patients within 8 hours after the onset of large-vessel, anterior-circulation strokes to undergo mechanical embolectomy (Merci Retriever or Penumbra System) or receive standard care. All patients underwent pretreatment computed tomography or magnetic resonance imaging of the brain. Randomization was stratified according to whether the patient had a favorable penumbral pattern (substantial salvageable tissue and small infarct core) or a nonpenumbral pattern (large core or small or absent penumbra). We assessed outcomes using the 90-day modified Rankin scale, ranging from 0 (no symptoms) to 6 (dead). RESULTS Among 118 eligible patients, the mean age was 65.5 years, the mean time to enrollment was 5.5 hours, and 58% had a favorable penumbral pattern. Revascularization in the embolectomy group was achieved in 67% of the patients. Ninety-day mortality was 21%, and the rate of symptomatic intracranial hemorrhage was 4%; neither rate differed across groups. Among all patients, mean scores on the modified Rankin scale did not differ between embolectomy and standard care (3.9 vs. 3.9, P=0.99). Embolectomy was not superior to standard care in patients with either a favorable penumbral pattern (mean score, 3.9 vs. 3.4; P=0.23) or a nonpenumbral pattern (mean score, 4.0 vs. 4.4; P=0.32). In the primary analysis of scores on the 90-day modified Rankin scale, there was no interaction between the pretreatment imaging pattern and treatment assignment (P=0.14). CONCLUSIONS A favorable penumbral pattern on neuroimaging did not identify patients who would differentially benefit from endovascular therapy for acute ischemic stroke, nor was embolectomy shown to be superior to standard care. (Funded by the National Institute of Neurological Disorders and Stroke; MR RESCUE ClinicalTrials.gov number, NCT00389467.).


Stroke | 2006

Perfusion-CT Assessment of Infarct Core and Penumbra: Receiver Operating Characteristic Curve Analysis in 130 Patients Suspected of Acute Hemispheric Stroke

Max Wintermark; Adam E. Flanders; Birgitta K. Velthuis; Reto Meuli; Maarten S. van Leeuwen; Dorit Goldsher; Carissa Pineda; Joaquín Serena; Irene C. van der Schaaf; Annet Waaijer; James C. Anderson; Gary M. Nesbit; Igal Gabriely; Victoria Medina; Ana Quiles; Scott Pohlman; Marcel Quist; Pierre Schnyder; Julien Bogousslavsky; William P. Dillon; Salvador Pedraza

Background and Purpose— Different definitions have been proposed to define the ischemic penumbra from perfusion-CT (PCT) data, based on parameters and thresholds tested only in small pilot studies. The purpose of this study was to perform a systematic evaluation of all PCT parameters (cerebral blood flow, volume [CBV], mean transit time [MTT], time-to-peak) in a large series of acute stroke patients, to determine which (combination of) parameters most accurately predicts infarct and penumbra. Methods— One hundred and thirty patients with symptoms suggesting hemispheric stroke ≤12 hours from onset were enrolled in a prospective multicenter trial. They all underwent admission PCT and follow-up diffusion-weighted imaging/fluid-attenuated inversion recovery (DWI/FLAIR); 25 patients also underwent admission DWI/FLAIR. PCT maps were assessed for absolute and relative reduced CBV, reduced cerebral blood flow, increased MTT, and increased time-to-peak. Receiver-operating characteristic curve analysis was performed to determine the most accurate PCT parameter, and the optimal threshold for each parameter, using DWI/FLAIR as the gold standard. Results— The PCT parameter that most accurately describes the tissue at risk of infarction in case of persistent arterial occlusion is the relative MTT (area under the curve=0.962), with an optimal threshold of 145%. The PCT parameter that most accurately describes the infarct core on admission is the absolute CBV (area under the curve=0.927), with an optimal threshold at 2.0 ml×100 g−1. Conclusion— In a large series of 130 patients, the optimal approach to define the infarct and the penumbra is a combined approach using 2 PCT parameters: relative MTT and absolute CBV, with dedicated thresholds.


Lancet Neurology | 2009

Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study.

Werner Hacke; Anthony J. Furlan; Yasir Al-Rawi; Antoni Dávalos; Jochen B. Fiebach; Franz Gruber; Markku Kaste; Leslie J Lipka; Salvador Pedraza; Peter A. Ringleb; Howard A. Rowley; Dietmar Schneider; Lee H. Schwamm; Joaquin Serena Leal; Mariola Söhngen; Phil A. Teal; Karin Wilhelm-Ogunbiyi; Max Wintermark; Steven Warach

BACKGROUND Previous studies have suggested that desmoteplase, a novel plasminogen activator, has clinical benefit when given 3-9 h after the onset of the symptoms of stroke in patients with presumptive tissue at risk that is identified by magnetic resonance perfusion imaging (PI) and diffusion-weighted imaging (DWI). METHODS In this randomised, placebo-controlled, double-blind, dose-ranging study, patients with acute ischaemic stroke and tissue at risk seen on either MRI or CT imaging were randomly assigned (1:1:1) to 90 microg/kg desmoteplase, 125 microg/kg desmoteplase, or placebo within 3-9 h after the onset of symptoms of stroke. The primary endpoint was clinical response rates at day 90, defined as a composite of improvement in National Institutes of Health stroke scale (NIHSS) score of 8 points or more or an NIHSS score of 1 point or less, a modified Rankin scale score of 0-2 points, and a Barthel index of 75-100. Secondary endpoints included change in lesion volume between baseline and day 30, rates of symptomatic intracranial haemorrhage, and mortality rates. Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, NCT00111852. FINDINGS Between June, 2005, and March, 2007, 193 patients were randomised, and 186 patients received treatment: 57 received 90 microg/kg desmoteplase; 66 received 125 microg/kg desmoteplase; and 63 received placebo. 158 patients completed the study. The median baseline NIHSS score was 9 (IQR 6-14) points, and 30% (53 of 179) of the patients had a visible occlusion of a vessel at presentation. The core lesion and the mismatch volumes were small (median volumes were 10.6 cm(3) and 52.5 cm(3), respectively). The clinical response rates at day 90 were 47% (27 of 57) for 90 microg/kg desmoteplase, 36% (24 of 66) for 125 microg/kg desmoteplase, and 46% (29 of 63) for placebo. The median changes in lesion volume were: 90 microg/kg desmoteplase 14.0% (0.5 cm(3)); 125 microg/kg desmoteplase 10.8% (0.3 cm(3)); placebo -10.0% (-0.9 cm(3)). The rates of symptomatic intracranial haemorrhage were 3.5% (2 of 57) for 90 microg/kg desmoteplase, 4.5% (3 of 66) for 125 microg/kg desmoteplase, and 0% for placebo. The overall mortality rate was 11% (5% [3 of 57] for 90 microg/kg desmoteplase; 21% [14 of 66] for 125 microg/kg desmoteplase; and 6% [4 of 63] for placebo). INTERPRETATION The DIAS-2 study did not show a benefit of desmoteplase given 3-9 h after the onset of stroke. The high response rate in the placebo group could be explained by the mild strokes recorded (low baseline NIHSS scores, small core lesions, and small mismatch volumes that were associated with no vessel occlusions), which possibly reduced the potential to detect any effect of desmoteplase. FUNDING PAION Deutschland GmbH; Forest Laboratories.


Annals of Neurology | 2002

Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients

Max Wintermark; Marc Reichhart; Jean-Philippe Thiran; Philippe Maeder; Marc Chalaron; Pierre Schnyder; Julien Bogousslavsky; Reto Meuli

The purpose of this study was to determine the prognostic accuracy of perfusion computed tomography (CT), performed at the time of emergency room admission, in acute stroke patients. Accuracy was determined by comparison of perfusion CT with delayed magnetic resonance (MR) and by monitoring the evolution of each patients clinical condition. Twenty‐two acute stroke patients underwent perfusion CT covering four contiguous 10mm slices on admission, as well as delayed MR, performed after a median interval of 3 days after emergency room admission. Eight were treated with thrombolytic agents. Infarct size on the admission perfusion CT was compared with that on the delayed diffusion‐weighted (DWI)–MR, chosen as the gold standard. Delayed magnetic resonance angiography and perfusion‐weighted MR were used to detect recanalization. A potential recuperation ratio, defined as PRR = penumbra size/(penumbra size + infarct size) on the admission perfusion CT, was compared with the evolution in each patients clinical condition, defined by the National Institutes of Health Stroke Scale (NIHSS). In the 8 cases with arterial recanalization, the size of the cerebral infarct on the delayed DWI‐MR was larger than or equal to that of the infarct on the admission perfusion CT, but smaller than or equal to that of the ischemic lesion on the admission perfusion CT; and the observed improvement in the NIHSS correlated with the PRR (correlation coefficient = 0.833). In the 14 cases with persistent arterial occlusion, infarct size on the delayed DWI‐MR correlated with ischemic lesion size on the admission perfusion CT (r = 0.958). In all 22 patients, the admission NIHSS correlated with the size of the ischemic area on the admission perfusion CT (r = 0.627). Based on these findings, we conclude that perfusion CT allows the accurate prediction of the final infarct size and the evaluation of clinical prognosis for acute stroke patients at the time of emergency evaluation. It may also provide information about the extent of the penumbra. Perfusion CT could therefore be a valuable tool in the early management of acute stroke patients.


Stroke | 2005

Comparative Overview of Brain Perfusion Imaging Techniques

Max Wintermark; Musa Sesay; Emmanuel L. Barbier; Katalin Borbély; William P. Dillon; James D. Eastwood; Thomas C. Glenn; Cécile Grandin; Salvador Pedraza; Jean-François Soustiel; Tadashi Nariai; Greg Zaharchuk; J.-M. Caille; Vincent Dousset; Howard Yonas

Background and Purpose— Numerous imaging techniques have been developed and applied to evaluate brain hemodynamics. Among these are positron emission tomography, single photon emission computed tomography, Xenon-enhanced computed tomography, dynamic perfusion computed tomography, MRI dynamic susceptibility contrast, arterial spin labeling, and Doppler ultrasound. These techniques give similar information about brain hemodynamics in the form of parameters such as cerebral blood flow or cerebral blood volume. All of them are used to characterize the same types of pathological conditions. However, each technique has its own advantages and drawbacks. Summary of Review— This article addresses the main imaging techniques dedicated to brain hemodynamics. It represents a comparative overview established by consensus among specialists of the various techniques. Conclusions— For clinicians, this article should offer a clearer picture of the pros and cons of currently available brain perfusion imaging techniques and assist them in choosing the proper method for every specific clinical setting.


IEEE Transactions on Medical Imaging | 2015

The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

Bjoern H. Menze; András Jakab; Stefan Bauer; Jayashree Kalpathy-Cramer; Keyvan Farahani; Justin S. Kirby; Yuliya Burren; Nicole Porz; Johannes Slotboom; Roland Wiest; Levente Lanczi; Elizabeth R. Gerstner; Marc-André Weber; Tal Arbel; Brian B. Avants; Nicholas Ayache; Patricia Buendia; D. Louis Collins; Nicolas Cordier; Jason J. Corso; Antonio Criminisi; Tilak Das; Hervé Delingette; Çağatay Demiralp; Christopher R. Durst; Michel Dojat; Senan Doyle; Joana Festa; Florence Forbes; Ezequiel Geremia

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.


Stroke | 2013

Recommendations on Angiographic Revascularization Grading Standards for Acute Ischemic Stroke A Consensus Statement

Osama O. Zaidat; Albert J. Yoo; Pooja Khatri; Thomas A. Tomsick; Rüdiger von Kummer; Jeffrey L. Saver; Michael P. Marks; Shyam Prabhakaran; David F. Kallmes; Brian-Fred Fitzsimmons; J Mocco; Joanna M. Wardlaw; Stanley L. Barnwell; Tudor G. Jovin; Italo Linfante; Adnan H. Siddiqui; Michael J. Alexander; Joshua A. Hirsch; Max Wintermark; Gregory W. Albers; Henry H. Woo; Donald Heck; Michael H. Lev; Richard I. Aviv; Werner Hacke; Steven Warach; Joseph P. Broderick; Colin P. Derdeyn; Anthony J. Furlan; Raul G. Nogueira

See related article, p 2509 Intra-arterial therapy (IAT) for acute ischemic stroke (AIS) has dramatically evolved during the past decade to include aspiration and stent-retriever devices. Recent randomized controlled trials have demonstrated the superior revascularization efficacy of stent-retrievers compared with the first-generation Merci device.1,2 Additionally, the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) 2, the Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy (MR RESCUE), and the Interventional Management of Stroke (IMS) III trials have confirmed the importance of early revascularization for achieving better clinical outcome.3–5 Despite these data, the current heterogeneity in cerebral angiographic revascularization grading (CARG) poses a major obstacle to further advances in stroke therapy. To date, several CARG scales have been used to measure the success of IAT.6–14 Even when the same scale is used in different studies, it is applied using varying operational criteria, which further confounds the interpretation of this key metric.10 The lack of a uniform grading approach limits comparison of revascularization rates across clinical trials and hinders the translation of promising, early phase angiographic results into proven, clinically effective treatments.6–14 For these reasons, it is critical that CARG scales be standardized and end points for successful revascularization be refined.6 This will lead to a greater understanding of the aspects of revascularization that are strongly predictive of clinical response. The optimal grading scale must demonstrate (1) a strong correlation with clinical outcome, (2) simplicity and feasibility of scale interpretation while ensuring characterization of relevant angiographic findings, and (3) high inter-rater reproducibility. To address these issues, a multidisciplinary panel of neurointerventionalists, neuroradiologists, and stroke neurologists with extensive experience in neuroimaging and IAT, convened at the “Consensus Meeting on Revascularization Grading Following Endovascular Therapy” with the goal …


Stroke | 2002

Comparison of Admission Perfusion Computed Tomography and Qualitative Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging in Acute Stroke Patients

Max Wintermark; M. Reichhart; Olivier Cuisenaire; P. Maeder; Jean-Philippe Thiran; P. Schnyder; J. Bogousslavsky; Reto Meuli

Background and Purpose— Besides classic criteria, cerebral perfusion imaging could improve patient selection for thrombolytic therapy. The purpose of this study was to compare quantitative perfusion CT imaging and qualitative diffusion- and perfusion-weighted MRI (DWI and PWI) in acute stroke patients at the time of their emergency evaluation. Methods— Thirteen acute stroke patients underwent perfusion CT and DWI or PWI on admission. The size of infarct and ischemic lesion (infarct plus penumbra) on the admission perfusion CT was compared with that of the MR abnormalities as shown on the DWI trace and on the relative cerebral blood volume, cerebral blood flow, time to peak, and mean transit time maps calculated from PWI studies. Results— The most significant correlation was found between infarct size on the admission perfusion CT and abnormality size on the admission DWI map (r =0.968, P <0.001). A significant correlation was also observed between the size of the ischemic lesion (infarct plus penumbra) on the admission perfusion CT and the abnormality size on the mean transit time map calculated from admission PWI (r =0.946, P <0.001). Information about cerebral infarct and total ischemia (infarct plus penumbra) carried by both imaging techniques was similar, with slopes of 0.913 and 0.905, respectively. Conclusions— An imaging technique may be helpful in the identification of cerebral penumbra in acute stroke patients and thus in the selection of patients for thrombolytic therapy. Perfusion CT and DWI/PWI are equivalent in this task.


American Journal of Neuroradiology | 2008

High-Resolution CT Imaging of Carotid Artery Atherosclerotic Plaques

Max Wintermark; S.S. Jawadi; Joseph H. Rapp; Tarik Tihan; Elizabeth Tong; David V. Glidden; S. Abedin; Sarah Schaeffer; Gabriel Acevedo-Bolton; B. Boudignon; B. Orwoll; Xian-Mang Pan; David Saloner

BACKGROUND AND PURPOSE: Plaque morphologic features have been suggested as a complement to luminal narrowing measurements for assessing the risk of stroke associated with carotid atherosclerotic disease, giving rise to the concept of “vulnerable plaque.” The purpose of this study was to evaluate the ability of multidetector-row CT angiography (CTA) to assess the composition and characteristics of carotid artery atherosclerotic plaques with use of histologic examination as the gold standard. MATERIALS AND METHODS: Eight patients with transient ischemic attacks who underwent carotid CTA and “en bloc” endarterectomy were enrolled in a prospective study. An ex vivo micro-CT study of each endarterectomy specimen was obtained, followed by histologic examination. A systematic comparison of CTA images with histologic sections and micro-CT images was performed to determine the CT attenuation associated with each component of the atherosclerotic plaques. A computer algorithm was subsequently developed that automatically identifies the components of the carotid atherosclerotic plaques, based on the density of each pixel. A neuroradiologists reading of this computer analysis was compared with the interpretation of the histologic slides by a pathologist with respect to the types and characteristics of the carotid plaques. RESULTS: There was a 72.6% agreement between CTA and histologic examination in carotid plaque characterization. CTA showed perfect concordance for calcifications. A significant overlap between densities associated with lipid-rich necrotic core, connective tissue, and hemorrhage limited the reliability of individual pixel readings to identify these components. However, CTA showed good correlation with histologic examination for large lipid cores (κ = 0.796; P < .001) and large hemorrhages (κ = 0.712; P = .102). CTA performed well in detecting ulcerations (κ = 0.855) and in measuring the fibrous cap thickness (R2 = 0.77; P < .001). CONCLUSION: The composition of carotid atherosclerotic plaques determined by CTA reflects plaque composition defined by histologic examination.

Collaboration


Dive into the Max Wintermark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reto Meuli

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge