Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maxence Gauthier is active.

Publication


Featured researches published by Maxence Gauthier.


Nature Communications | 2016

Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

D. Kraus; A. Ravasio; Maxence Gauthier; Dirk O. Gericke; Jan Vorberger; Simon Frydrych; J. Helfrich; L. B. Fletcher; G. Schaumann; B. Nagler; B. Barbrel; B. Bachmann; E. J. Gamboa; S. Göde; Eduardo Granados; G. Gregori; Hae Ja Lee; P. Neumayer; W. Schumaker; T. Döppner; R. W. Falcone; S. H. Glenzer; Markus Roth

The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.


Journal of Physics B | 2016

Matter under extreme conditions experiments at the Linac Coherent Light Source

S. H. Glenzer; L. B. Fletcher; E. Galtier; B. Nagler; R Alonso-Mori; B Barbrel; S. B. Brown; D. A. Chapman; Zhijiang Chen; C B Curry; F Fiuza; E. J. Gamboa; Maxence Gauthier; Dirk O. Gericke; Arianna Gleason; S. Goede; Eduardo Granados; Philip A. Heimann; J. B. Kim; D Kraus; M. J. MacDonald; A J Mackinnon; Rohini Mishra; A. Ravasio; C. Roedel; Philipp Sperling; Will Schumaker; Y Y Tsui; Jan Vorberger; U Zastrau

The matter in extreme conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump–probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime. This instrument combines the worlds brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the first experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering measurements on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. These complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness x-rays resolves the ionic interactions at atomic (Angstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. These studies have demonstrated our ability to measure fundamental thermodynamic properties that determine the state of matter in the HED physics regime.


Physical Review Letters | 2017

Relativistic Electron Streaming Instabilities Modulate Proton Beams Accelerated in Laser-Plasma Interactions

S. Göde; Christian Rödel; K. Zeil; Rohini Mishra; Maxence Gauthier; Florian-Emanuel Brack; T. Kluge; Michael MacDonald; Josefine Metzkes; Lieselotte Obst; Martin Rehwald; C. Ruyer; H.-P. Schlenvoigt; W. Schumaker; P. Sommer; T. E. Cowan; U. Schramm; S. H. Glenzer; F. Fiuza

We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a μm-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of B>10  MG and E>0.1  MV/μm fields with a μm-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length ≳0.13λ_{0}sqrt[a_{0}]. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multipurpose applications.


Scientific Reports | 2017

Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets

Lieselotte Obst; S. Göde; Martin Rehwald; Florian Emanuel Brack; Joao Branco; S. Bock; M. Bussmann; T. E. Cowan; Chandra Curry; F. Fiuza; Maxence Gauthier; Rene Gebhardt; U. Helbig; Axel Huebl; Uwe Hübner; A. Irman; Lev Kazak; J. B. Kim; T. Kluge; S. D. Kraft; Markus Loeser; Josefine Metzkes; Rohini Mishra; Christian Rodel; Hans Peter Schlenvoigt; Mathias Siebold; J. Tiggesbäumker; Steffen Wolter; Tim Ziegler; U. Schramm

We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.


Review of Scientific Instruments | 2016

High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

Maxence Gauthier; J. B. Kim; Chandra Curry; Bastian Aurand; E. J. Gamboa; S. Göde; C. Goyon; A. Hazi; S. Kerr; A. Pak; A. Propp; B. Ramakrishna; J. Ruby; O. Willi; G. J. Williams; C. Rödel; S. H. Glenzer

We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.


Review of Scientific Instruments | 2014

New experimental platform to study high density laser-compressed matter

Maxence Gauthier; L. B. Fletcher; A. Ravasio; E. Galtier; E. J. Gamboa; Eduardo Granados; J. B. Hastings; P. A. Heimann; Hae Ja Lee; B. Nagler; Andreas Schropp; Arianna Gleason; T. Döppner; S. LePape; T. Ma; A. Pak; Michael MacDonald; S. Ali; B. Barbrel; R. W. Falcone; D. Kraus; Zhijiang Chen; M. Mo; M. S. Wei; S. H. Glenzer

We have developed a new experimental platform at the Linac Coherent Light Source (LCLS) which combines simultaneous angularly and spectrally resolved x-ray scattering measurements. This technique offers a new insights on the structural and thermodynamic properties of warm dense matter. The < 50 fs temporal duration of the x-ray pulse provides near instantaneous snapshots of the dynamics of the compression. We present a proof of principle experiment for this platform to characterize a shock-compressed plastic foil. We observe the disappearance of the plastic semi-crystal structure and the formation of a compressed liquid ion-ion correlation peak. The plasma parameters of shock-compressed plastic can be measured as well, but requires an averaging over a few tens of shots.


Applied Physics Letters | 2017

High repetition rate, multi-MeV proton source from cryogenic hydrogen jets

Maxence Gauthier; Chandra Curry; S. Göde; Florian-Emanuel Brack; J. B. Kim; Michael MacDonald; Josefine Metzkes; Lieselotte Obst; Martin Rehwald; C. Rödel; H.-P. Schlenvoigt; Will Schumaker; U. Schramm; K. Zeil; S. H. Glenzer

We report on a high repetition rate proton source produced by high-intensity laser irradiation of a continuously flowing, cryogenic hydrogen jet. The proton energy spectra are recorded at 1 Hz for Draco laser powers of 6, 20, 40, and 100 TW. The source delivers ∼1013 protons/MeV/sr/min. We find that the average proton number over one minute, at energies sufficiently far from the cut-off energy, is robust to laser-target overlap and nearly constant. This work is therefore a first step towards pulsed laser-driven proton sources for time-resolved radiation damage studies and applications which require quasi-continuous doses at MeV energies.


Review of Scientific Instruments | 2016

Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability

Sophia Chen; Maxence Gauthier; Magdalena Bazalova-Carter; S. Bolanos; S. H. Glenzer; R. Riquier; G. Revet; P. Antici; A. Morabito; A. Propp; M. Starodubtsev; J. Fuchs

Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.


Physics of Plasmas | 2015

The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scatteringa)

D. Kraus; Jan Vorberger; J. Helfrich; Dirk O. Gericke; B. Bachmann; V. Bagnoud; B. Barbrel; A. Blažević; D. C. Carroll; W. Cayzac; T. Döppner; L. B. Fletcher; A. Frank; Simon Frydrych; E. J. Gamboa; Maxence Gauthier; S. Göde; Eduardo Granados; G. Gregori; N. J. Hartley; B. Kettle; Hae Ja Lee; B. Nagler; Paul Neumayer; M. Notley; A. Ortner; A. Otten; A. Ravasio; D. Riley; F. Roth

We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding pos...


Review of Scientific Instruments | 2016

High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

L. B. Fletcher; U. Zastrau; E. Galtier; E. J. Gamboa; S. Goede; W. Schumaker; A. Ravasio; Maxence Gauthier; Michael MacDonald; Zhuoyu Chen; Eduardo Granados; Hae Ja Lee; Alan Fry; J. B. Kim; C. Roedel; Rohini Mishra; A. Pelka; D. Kraus; B. Barbrel; T. Döppner; S. H. Glenzer

We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

Collaboration


Dive into the Maxence Gauthier's collaboration.

Top Co-Authors

Avatar

S. H. Glenzer

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. B. Fletcher

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. J. Gamboa

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eduardo Granados

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hae Ja Lee

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Nagler

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. Galtier

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rohini Mishra

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge