Maxim A. Timofeyev
Irkutsk State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maxim A. Timofeyev.
Hydrobiologia | 2010
Christian E. W. Steinberg; Steffen Herrmann; Rihab Bouchnak; Maxim A. Timofeyev; Ralph Menzel
In freshwater systems, many abiotic and biotic factors determine the natural fluctuation of Daphnia spec. populations: climatic and water quality parameters, quantitative and qualitative food quality and quantity, predation, and humic substances. Many factors/stressors act in concert. In this contribution, we supplied Daphnia magna with two different diets (chlorococcal alga Pseudokirchneriella subcapitata and baker’s yeast) fed ad libitum and exposed it to an environmentally realistic concentration of humic substances (HSs). Exposure to HSs caused a transcriptionally controlled stress response with studied genes; cat and hsp60, for the latter partial sequences have been identified. Furthermore, the exposure to HSs reduced the antioxidant capacity. Yet, a much stronger oxidative stress is caused by feeding yeast, which reduced the anti-oxidative capacity to values of approximately 50% of the green algal diet. This reduction is most likely due to the yeast’s cell wall to resist digestion rather than to the elemental ratio or deficiency in long-chained unsaturated fatty acids, because both diets were deficient in fatty acids with back bones of more than 20 C-atoms. We assume that the biochemical machinery in the gut continuously activated oxygen to cleave the yeast’s cell wall and, hence, reduced the antioxidative capacity of the animals. Neither the analyzed oxidant, H2O2, nor the antioxidants, total apparent ascorbic acid nor free proline, reflected the oxidative stress situations properly. In addition to the stress, HS exposure extended the mean lifespan of algae-fed D. magna, but at the expense of offspring numbers; so did also the pure yeast diet as compared to the algae diet. The first lifespan extension can be explained by the potential of HSs to block the pathway via the insulin-like growth factor 1 (IGF), whereas the second matches the, in aging papers, well described, but mechanistically poorly understood caloric restriction. Yeast-fed animals, exposed to HSs changed the energy allocation by reducing life span, but increasing offspring numbers. With the lifespan and offspring numbers, ecologically relevant parameters are differently affected by the simultaneous action of two environmentally relevant stressors.
Molecular Ecology | 2013
Daria S. Bedulina; M. B. Evgen'ev; Maxim A. Timofeyev; Marina V. Protopopova; David G. Garbuz; V. V. Pavlichenko; Till Luckenbach; Zhanna M. Shatilina; Denis V. Axenov-Gribanov; Anton Gurkov; Inna M. Sokolova; Olga G. Zatsepina
We studied various aspects of heat‐shock response with special emphasis on the expression of heat‐shock protein 70 (hsp70) genes at various levels in two congener species of littoral endemic amphipods (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal which show striking differences in their vertical distribution and thermal tolerance. Although both the species studied demonstrate high constitutive levels of Hsp70, the thermotolerant E. cyaneus exhibited a 5‐fold higher basal level of Hsp70 proteins under normal physiological conditions (7 °C) and significantly lower induction of Hsp70 after temperature elevation compared with the more thermosensitive E. verrucosus. We isolated the hsp70 genes from both species and analysed their sequences. Two isoforms of the cytosolic Hsp70/Hsc70 proteins were detected in both species under normal physiological conditions and encoded by two distinct hsp/hsc70 family members. While both Hsp70 isoforms were synthesized without heat shock, only one of them was induced by temperature elevation. The observed differences in the Hsp70 expression patterns, including the dynamics of Hsp70 synthesis and threshold of induction, suggest that the increased thermotolerance in E. cyaneus (compared with E. verrucosus) is associated with a complex structural and functional rearrangement of the hsp70 gene family and favoured the involvement of Hsp70 in adaptation to fluctuating thermal conditions. This study provides insights into the molecular mechanisms underlying the thermal adaptation of Baikal amphipods and represents the first report describing the structure and function of the hsp70 genes of endemic Baikal species dwelling in thermally contrasting habitats.
Science of The Total Environment | 2004
Maxim A. Timofeyev; Claudia Wiegand; B. Kent Burnison; Zhanna M. Shatilina; Stephan Pflugmacher; Christian E. W. Steinberg
Natural organic matter (NOM) isolated from the eutrophic Sanctuary Pond (Point Pelee National Park, Canada) has an adverse impact on amphipod species (Gammarus tigrinus and Chaetogammarus ischnus from Lake Müggelsee, Germany, and Eulimnogammarus cyaneus, from Lake Baikal, Russia). Increases in amphipod mortality, changes in peroxidase activity and increases of heat shock protein (hsp70) expression were observed upon exposure to NOM. The highest resistance to the adverse impact of NOM was observed with the endemic Baikalian amphipod E. cyaneus. However, the mechanisms behind this finding remains obscure. If differences in the sensitivity of the hsp70 antibody may be excluded, different modes of action may be postulated: because the adverse impact of NOM may be caused by reactive oxygen species (ROS) and the NOM itself, the observed differences may be due to the action of ROS alone (with E. cyaneus) and a combination of both adverse modes of action (European species).
PLOS ONE | 2016
Denis V. Axenov-Gibanov; Irina V. Voytsekhovskaya; Bogdan Tokovenko; Eugeniy S. Protasov; Stanislav V. Gamaiunov; Yuriy Rebets; Andriy Luzhetskyy; Maxim A. Timofeyev
Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans.
Chemosphere | 2012
Sylva Hofmann; Maxim A. Timofeyev; Anke Putschew; Nadine Saul; Ralph Menzel; Christian E. W. Steinberg
Leaf litter processing is one major pathway of the global organic carbon cycle. During this process, a variety of small reactive organic compounds are released and transported to the aquatic environment, and may directly impact aquatic organisms as natural xenobiotics. We hypothesize that different forest stockings produce different leachate qualities, which in turn, stress the aquatic communities and, eventually, separate sensitive from tolerant species. Particularly, leachates from coniferous trees are suspected to have strongly adverse impacts on sensitive species. We exposed individuals of a clone of the model organism, Moina macrocopa, to comparable concentrations (approximately 2mM) of litter leachates of Norway spruce, Picea abies, Colorado blue spruce, Picea pungens, black poplar, Populus nigra, and sessile oak, Quercus petraea. The animals were fed ad libitum. The following life trait variables were recorded: growth, lifespan, and lifetime offspring. To identify, whether or not exposure to litter leachates provokes an internal oxidative stress in the exposed animals we measured the superoxide anion radical scavenging capacity via photoluminescence. Except of P. abies, exposure to the leachates reduced this antioxidant capacity by approximately 50%. Leachate exposures, except that of Quercus, increased body size and extended lifespan; furthermore, particularly the leachates of both Picea species significantly increased the offspring numbers. This unexpected behavior of exposed Moina may be based on food supplements (e.g., high carbohydrate contents) in the leachates or on yet to be identified regulatory pathways of energy allocation. Overall, our results suggest that the potentially adverse effects of litter leachates can be overruled by either bacterial-growth supporting fractions in the leachates or an internal compensation mechanism in the Moina individuals.
Comparative Biochemistry and Physiology B | 2014
Denis V. Axenov-Gribanov; Daria S. Bedulina; Zhanna M. Shatilina; Yulia A. Lubyaga; Kseniya P. Vereshchagina; Maxim A. Timofeyev
Our objective was to determine if the Lake Baikal endemic gastropod Benedictia limnaeoides ongurensis, which inhabits in stable cold waters expresses a thermal stress response. We hypothesized that the evolution of this species in the stable cold waters of Lake Baikal resulted in a reduction of its thermal stress-response mechanisms at the biochemical and cellular levels. Contrary to our hypothesis, our results show that exposure to a thermal challenge activates the cellular and biochemical mechanisms of thermal resistance, such as heat shock proteins and antioxidative enzymes, and alters energetic metabolism in B. limnaeoides ongurensis. Thermal stress caused the elevation of heat shock protein 70 and the products of anaerobic glycolysis together with the depletion of glucose and phosphagens in the studied species. Thus, a temperature increase activates the complex biochemical system of stress response and alters the energetic metabolism in this endemic Baikal gastropod. It is concluded that the deepwater Lake Baikal endemic gastropod B. limnaeoides ongurensis retains the ability to activate well-developed biochemical stress-response mechanisms when exposed to a thermal challenge.
PLOS ONE | 2016
Denis V. Axenov-Gribanov; Daria S. Bedulina; Zhanna M. Shatilina; Lena Jakob; Kseniya P. Vereshchagina; Yulia A. Lubyaga; Anton Gurkov; Ekaterina Shchapova; Till Luckenbach; Magnus Lucassen; Franz-Josef Sartoris; Hans-Otto Pörtner; Maxim A. Timofeyev
Temperature is the most pervasive abiotic environmental factor for aquatic organisms. Fluctuations in temperature range lead to changes in metabolic performance. Here, we aimed to identify whether surpassing the thermal preference zones is correlated with shifts in universal cellular stress markers of protein integrity, responses to oxidative stress and lactate content, as indicators of anaerobic metabolism. Exposure of the Lake Baikal endemic amphipod species Eulimnogammarus verrucosus (Gerstfeldt, 1858), Ommatogammarus flavus (Dybowski, 1874) and of the Holarctic amphipod Gammarus lacustris Sars 1863 (Amphipoda, Crustacea) to increasing temperatures resulted in elevated heat shock protein 70 (Hsp70) and lactate content, elevated antioxidant enzyme activities (i.e., catalase and peroxidase), and reduced lactate dehydrogenase and glutathione S-transferase activities. Thus, the zone of stability (absence of any significant changes) of the studied molecular and biochemical markers correlated with the behaviorally preferred temperatures. We conclude that the thermal behavioral responses of the studied amphipods are directly related to metabolic processes at the cellular level. Thus, the determined thermal ranges may possibly correspond to the thermal optima. This relationship between species-specific behavioral reactions and stress response metabolism may have significant ecological consequences that result in a thermal zone-specific distribution (i.e., depths, feed spectrum, etc.) of species. As a consequence, by separating species with different temperature preferences, interspecific competition is reduced, which, in turn, increases a species’ Darwinian fitness in its environment.
PLOS ONE | 2015
Ekaterina V. Madyarova; Renat V. Adelshin; Mariya Dimova; Denis V. Axenov-Gribanov; Yulia A. Lubyaga; Maxim A. Timofeyev
At present, approximately 187 genera and over 1300 species of Microsporidia have been described, among which almost half infect aquatic species and approximately 50 genera potentially infect aquatic arthropods. Lake Baikal is the deepest and one of the oldest lakes in the world, and it has a rich endemic fauna with a predominance of arthropods. Among the arthropods living in this lake, amphipods (Crustacea) are the most dominant group and are represented by more than 350 endemic species. Baikalian amphipods inhabit almost all depths and all types of substrates. The age and geographical isolation of this group creates excellent opportunities for studying the diversity, evolution and genetics of host-parasite relationships. However, despite more than 150 years of study, data investigating the microsporidia of Lake Baikal remain incomplete. In this study, we used molecular genetic analyses to detect microsporidia in the hemolymph of several endemic species of amphipods from Lake Baikal. We provide the first evidence that microsporidian species belonging to three genera (Microsporidium, Dictyocoela and Nosema) are present in the hemolymph of Baikalian endemic amphipods. In the hemolymph of Eulimnogammarus verrucosus, we detected SSU rDNA of microsporidia belonging to the genus Nozema. In the hemolymph of Pallasea cancellous, we found the DNA of Microsporidium sp. similar to that in other Baikalian endemic amphipods; Dictyocoela sp. was found in the hemolymph of Eulimnogammarus marituji and Acanthogammarus lappaceus longispinus.
PeerJ | 2017
Daria S. Bedulina; Michael F. Meyer; Anton Gurkov; Ekaterina Kondratjeva; Boris Baduev; Roman Gusdorf; Maxim A. Timofeyev
Acute temperature fluctuations are common in surface waters, and aquatic organisms may manifest physiological responses to punctuated temperature spikes long before behavioral responses. Ectotherms, especially cryophilic stenotherms such as those endemic to Lake Baikal (Siberia), may demonstrate specialized physiological responses to acute temperature increases because their proteomes have evolved to function most efficiently at lower temperatures (e.g., <10 °C). Therefore, our study questioned the nature and degree of variation in physiological response to acute thermal stress in two congenerous, endemic Baikal amphipod species, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus. We hypothesized that because interspecific and intersexual thermosensitivity varies significantly among ectotherms, there would be divergent intersexual and interspecific strategies to withstand acute thermal stress, manifested in different protein compositions and concentrations. We exposed individuals to the species’ respective LT50 for one hour followed by a three-hour recovery period. We then performed 1D-PAGE, Western blotting, 2D-PAGE, and Mass Spectrometry techniques and assessed relative intersexual and interspecific changes in proteomic composition and heat shock protein 70 level. Our results demonstrate that females tend to be more sensitive to an acute thermal stimulus than males, most likely because females allocate significant energy to reproduction and less to heat shock response, evidenced by females’ significantly lower LT50time. Lower level of Hsp70 was found in females of the thermosensitive E. verrucosus compared to males of this species. No intersexual differences were found in Hsp70 level in thermotolerant E. cyaneus. Higher levels of hemocyanin subunits and arginine kinase were found in E. cyaneus females after heat shock and recovery compared to males, which was not found for E. verrucosus, suggesting interspecific mechanisms for E. cyaneus’s higher thermotolerance. These differing responses between species and sexes of Baikal amphipods may reflect more general strategies for maintaining homeostatic conditions during acute thermal stress. As mean surface water temperatures increase worldwide, the net efficiency and efficacy of these strategies could give rise to long term changes in physiology, behavior, and interactions with other species, potentially precipitating population and community level alterations.
Scientific Reports | 2016
Anton Gurkov; Ekaterina Shchapova; Daria S. Bedulina; Boris Baduev; Ekaterina Borvinskaya; Igor Meglinski; Maxim A. Timofeyev
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.