Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maxim Mostovoy is active.

Publication


Featured researches published by Maxim Mostovoy.


Physical Review Letters | 2006

Ferroelectricity in spiral magnets

Maxim Mostovoy

It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric susceptibility anomalies at magnetic transitions and sudden flops of electric polarization in an applied magnetic field. We show that electric polarization can also be induced at domain walls and that magnetic vortices carry electric charge.


Nature Materials | 2012

Anisotropic conductance at improper ferroelectric domain walls

Dennis Meier; Jan Seidel; Andres Cano; Kris T. Delaney; Yu Kumagai; Maxim Mostovoy; Nicola A. Spaldin; R. Ramesh; Manfred Fiebig

Transition metal oxides hold great potential for the development of new device paradigms because of the field-tunable functionalities driven by their strong electronic correlations, combined with their earth abundance and environmental friendliness. Recently, the interfaces between transition-metal oxides have revealed striking phenomena, such as insulator-metal transitions, magnetism, magnetoresistance and superconductivity. Such oxide interfaces are usually produced by sophisticated layer-by-layer growth techniques, which can yield high-quality, epitaxial interfaces with almost monolayer control of atomic positions. The resulting interfaces, however, are fixed in space by the arrangement of the atoms. Here we demonstrate a route to overcoming this geometric limitation. We show that the electrical conductance at the interfacial ferroelectric domain walls in hexagonal ErMnO(3) is a continuous function of the domain wall orientation, with a range of an order of magnitude. We explain the observed behaviour using first-principles density functional and phenomenological theories, and relate it to the unexpected stability of head-to-head and tail-to-tail domain walls in ErMnO(3) and related hexagonal manganites. As the domain wall orientation in ferroelectrics is tunable using modest external electric fields, our finding opens a degree of freedom that is not accessible to spatially fixed interfaces.


Journal of Physics: Condensed Matter | 2008

The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect

Nicola A. Spaldin; Manfred Fiebig; Maxim Mostovoy

The concept of toroidal moments in condensed-matter physics and their long-range ordering in a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary ferroic order can be understood both from microscopic (multipole expansion) and macroscopic (symmetry-based expansion of the free energy) points of view. The definition of the local toroidal moment and its transformation properties under the space-inversion and time reversal operations are highlighted and the extension to periodic bulk systems is discussed. Particular attention is paid to the relationship between the toroidal moment and the antisymmetric magnetoelectric effect and to limitations of the magnetoelectric response in ferrotoroidic systems and ferroic materials in general. Experimental access to the ferrotoroidic state by magnetoelectric susceptibility measurements, x-ray diffraction and optical techniques or direct measurement of the bulk toroidization is discussed. We outline the pertinent questions that should be clarified for continued advancement of the field and mention some potential applications of ferrotoroidic materials.


Physical Review Letters | 2011

Dynamics of Skyrmion Crystals in Metallic Thin Films

Jiadong Zang; Maxim Mostovoy; Jung Hoon Han; Naoto Nagaosa

We study the collective dynamics of the Skyrmion crystal in thin films of ferromagnetic metals resulting from the nontrivial Skyrmion topology. It is shown that the current-driven motion of the crystal reduces the topological Hall effect and the Skyrmion trajectories bend away from the direction of the electric current (the Skyrmion Hall effect). We find a new dissipation mechanism in noncollinear spin textures that can lead to a much faster spin relaxation than Gilbert damping, calculate the dispersion of phonons in the Skyrmion crystal, and discuss the effects of impurity pinning of Skyrmions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Magnetic stripes and skyrmions with helicity reversals

Xiuzhen Yu; Maxim Mostovoy; Yusuke Tokunaga; Weizhu Zhang; Koji Kimoto; Yoshio Matsui; Yoshio Kaneko; Naoto Nagaosa; Yoshinori Tokura

It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion—a nano-sized bundle of noncoplanar spins—that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide–M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom—helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.


Nature Materials | 2014

Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect

Masahito Mochizuki; Xiuzhen Yu; S. Seki; Naoya Kanazawa; Wataru Koshibae; Jiadong Zang; Maxim Mostovoy; Y. Tokura; Naoto Nagaosa

Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion--a particle-like object in which spins point in all directions to wrap a sphere--constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micrometre-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi exhibit a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.


Physical Review Letters | 2009

Origin of Electromagnon Excitations in Multiferroic RMnO3

R. Valdés Aguilar; Maxim Mostovoy; Andrei B. Sushkov; C. L. Zhang; Young Jai Choi; Sang-Wook Cheong; H. D. Drew

Electromagnon excitations in multiferroic orthorhombic RMnO3 are shown to result from the Heisenberg coupling between spins despite the fact that the static polarization arises from the much weaker Dzyaloshinskii-Moriya exchange interaction. We present a model incorporating the structural characteristics of this family of manganites that is confirmed by far infrared transmission data as a function of temperature and magnetic field and inelastic neutron scattering results. A deep connection is found between the magnetoelectric dynamics of the spiral phase and the static magnetoelectric coupling in the collinear E phase of this family of manganites.


European Physical Journal B | 1999

Double-exchange model: phase separation versus canted spins

M.Yu. Kagan; D.I Khomskii; Maxim Mostovoy

Abstract:We study the competition between different possible ground states of the double-exchange model with strong ferromagnetic exchange interaction between itinerant electrons and local spins. Both for classical and quantum treatment of the local spins the homogeneous canted state is shown to be unstable against a phase separation. The conditions for the phase separation into the mixture of the antiferromagnetic and ferromagnetic/canted states are given. We also discuss another possible realization of the phase-separated state: ferromagnetic polarons embedded into an antiferromagnetic surrounding. The general picture of a percolated state, which emerges from these considerations, is discussed and compared with results of recent experiments on doped manganaties.


Nature Materials | 2014

Landau theory of topological defects in multiferroic hexagonal manganites

Sergey Artyukhin; Kris T. Delaney; Nicola A. Spaldin; Maxim Mostovoy

Topological defects in ordered states with spontaneously broken symmetry often have unusual physical properties, such as fractional electric charge or a quantized magnetic field flux, originating from their non-trivial topology. Coupled topological defects in systems with several coexisting orders give rise to unconventional functionalities, such as the electric-field control of magnetization in multiferroics resulting from the coupling between the ferroelectric and ferromagnetic domain walls. Hexagonal manganites provide an extra degree of freedom: in these materials, both ferroelectricity and magnetism are coupled to an additional, non-ferroelectric structural order parameter. Here we present a theoretical study of topological defects in hexagonal manganites based on Landau theory with parameters determined from first-principles calculations. We explain the observed flip of electric polarization at the boundaries of structural domains, the origin of the observed discrete vortices, and the clamping between ferroelectric and antiferromagnetic domain walls. We show that structural vortices induce magnetic ones and that, consistent with a recent experimental report, ferroelectric domain walls can carry a magnetic moment.


Nature Communications | 2015

Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet.

A. O. Leonov; Maxim Mostovoy

Multiply periodic states appear in a wide variety of physical contexts, such as the Rayleigh–Bénard convection, Faraday waves, liquid crystals and skyrmion crystals recently observed in chiral magnets. Here we study the phase diagram of an anisotropic frustrated magnet which contains five different multiply periodic states including the skyrmion crystal. We clarify the mechanism for stabilization of these states and discuss how they can be observed in magnetic resonance and electric polarization measurements. We also find stable isolated skyrmions with topological charge 1 and 2. Their spin structure, interactions and dynamics are more complex than those in chiral magnets. In particular, magnetic resonance in the skyrmion crystal should be accompanied by oscillations of the electric polarization with a frequency depending on the amplitude of the a.c. magnetic field. These results show that skyrmion materials with rich physical properties can be found among frustrated magnets. We formulate rules to help the search.

Collaboration


Dive into the Maxim Mostovoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.I Khomskii

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey Artyukhin

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge