Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maxim Yulikov is active.

Publication


Featured researches published by Maxim Yulikov.


Journal of the American Chemical Society | 2013

Large Molecular Weight Nitroxide Biradicals Providing Efficient Dynamic Nuclear Polarization at Temperatures up to 200 K

Alexandre Zagdoun; Gilles Casano; Olivier Ouari; Martin Schwarzwälder; Aaron J. Rossini; Fabien Aussenac; Maxim Yulikov; Gunnar Jeschke; Christophe Copéret; Anne Lesage; Paul Tordo; Lyndon Emsley

A series of seven functionalized nitroxide biradicals (the bTbK biradical and six derivatives) are investigated as exogenous polarization sources for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and with ca. 100 K sample temperatures. The impact of electron relaxation times on the DNP enhancement (ε) is examined, and we observe that longer inversion recovery and phase memory relaxation times provide larger ε. All radicals are tested in both bulk 1,1,2,2-tetrachloroethane solutions and in mesoporous materials, and the difference in ε between the two cases is discussed. The impact of the sample temperature and magic angle spinning frequency on ε is investigated for several radicals each characterized by a range of electron relaxation times. In particular, TEKPol, a bulky derivative of bTbK with a molecular weight of 905 g·mol(-1), is presented. Its high-saturation factor makes it a very efficient polarizing agent for DNP, yielding unprecedented proton enhancements of over 200 in both bulk and materials samples at 9.4 T and 100 K. TEKPol also yields encouraging enhancements of 33 at 180 K and 12 at 200 K, suggesting that with the continued improvement of radicals large ε may be obtained at higher temperatures.


Nature | 2014

Structural basis of the non-coding RNA RsmZ acting as a protein sponge

Olivier Duss; Erich Michel; Maxim Yulikov; Mario Schubert; Gunnar Jeschke; Frédéric H.-T. Allain

MicroRNA and protein sequestration by non-coding RNAs (ncRNAs) has recently generated much interest. In the bacterial Csr/Rsm system, which is considered to be the most general global post-transcriptional regulatory system responsible for bacterial virulence, ncRNAs such as CsrB or RsmZ activate translation initiation by sequestering homodimeric CsrA-type proteins from the ribosome-binding site of a subset of messenger RNAs. However, the mechanism of ncRNA-mediated protein sequestration is not understood at the molecular level. Here we show for Pseudomonas fluorescens that RsmE protein dimers assemble sequentially, specifically and cooperatively onto the ncRNA RsmZ within a narrow affinity range. This assembly yields two different native ribonucleoprotein structures. Using a powerful combination of nuclear magnetic resonance and electron paramagnetic resonance spectroscopy we elucidate these 70-kilodalton solution structures, thereby revealing the molecular mechanism of the sequestration process and how RsmE binding protects the ncRNA from RNase E degradation. Overall, our findings suggest that RsmZ is well-tuned to sequester, store and release RsmE and therefore can be viewed as an ideal protein ‘sponge’.


Journal of the American Chemical Society | 2010

Charge-mediated adsorption behavior of CO on MgO-supported Au clusters.

Xiao Lin; Bing Yang; Hadj-Mohamed Benia; Philipp Myrach; Maxim Yulikov; Andreas Aumer; Matthew A. Brown; Martin Sterrer; Oleksander Bondarchuk; Esther Kieseritzky; Jan Rocker; Thomas Risse; Hong-Jun Gao; Niklas Nilius; Hans-Joachim Freund

The CO binding behavior to gold particles supported on MgO thin films has been analyzed with scanning tunneling microscopy (STM) and infrared spectroscopy (IRAS). The ad-particles accommodate excess electrons that originate either from a charge transfer through the thin oxide film or from a local interaction with electron-rich oxide defects that act as Au nucleation centers. The enhanced electron density in the Au aggregates affects both the spatial distribution and the vibrational properties of adsorbed CO species. Whereas preferential CO attachment to the chemically unsaturated and electron-rich boundary sites of the Au islands is deduced from the STM data, a continuous downshift of the CO stretching frequency with decreasing particle size is observed in IRAS. Both results are interpreted in the light of CO adsorption to negatively charged metal aggregates and used to draw general conclusions on the interplay between charge and adsorption properties of confined metal systems.


Physical Chemistry Chemical Physics | 2012

Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd3+–DTPA chelate complexes

Maxim Yulikov; Petra Lueders; Muhammad Farooq Warsi; Victor Chechik; Gunnar Jeschke

Nanosized gold particles were functionalised with two types of paramagnetic surface tags, one having a nitroxide radical and the other one carrying a DTPA complex loaded with Gd(3+). Selective measurements of nitroxide-nitroxide, Gd(3+)-nitroxide and Gd(3+)-Gd(3+) distances were performed on this system and information on the distance distribution in the three types of spin pairs was obtained. A numerical analysis of the dipolar frequency distributions is presented for Gd(3+) centres with moderate magnitudes of zero-field splitting, in the range of detection frequencies and resonance fields where the high-field approximation is only roughly valid. The dipolar frequency analysis confirms the applicability of DEER for distance measurements in such complexes and gives an estimate for the magnitudes of possible systematic errors due to the non-ideality of the measurement of the dipole-dipole interaction.


Nature Communications | 2014

EPR-aided approach for solution structure determination of large RNAs or protein–RNA complexes

Olivier Duss; Maxim Yulikov; Gunnar Jeschke; Frédéric H.-T. Allain

High-resolution structural information on RNA and its functionally important complexes with proteins is dramatically underrepresented compared with proteins but is urgently needed for understanding cellular processes at the molecular and atomic level. Here we present an EPR-based protocol to help solving large RNA and protein-RNA complex structures in solution by providing long-range distance constraints between rigid fragments. Using enzymatic ligation of smaller RNA fragments, large doubly spin-labelled RNAs can be obtained permitting the acquisition of long distance distributions (>80 Å) within a large protein-RNA complex. Using a simple and fast calculation in torsion angle space of the spin-label distributions with the program CYANA, we can derive simple distance constraints between the spin labels and use them together with short-range distance restraints derived from NMR to determine the structure of a 70 kDa protein-RNA complex composed of three subcomplexes.


Journal of Physical Chemistry B | 2013

Orthogonal spin labeling and Gd(III)-nitroxide distance measurements on bacteriophage T4-lysozyme.

Luca Garbuio; Enrica Bordignon; Evan K. Brooks; Wayne L. Hubbell; Gunnar Jeschke; Maxim Yulikov

We present the first example of chemoselective site-specific spin labeling of a monomeric protein with two spectroscopically orthogonal spin labels: a gadolinium(III) chelate complex and a nitroxide radical. A detailed analysis of the performance of two commercially available Gd(III) ligands in the Gd(III)-nitroxide pulse double electron-electron resonance (DEER or PELDOR) experiment is reported. A modification of the flip angle of the pump pulse in the Gd(III)-nitroxide DEER experiment is proposed to optimize sensitivity.


Journal of Physical Chemistry B | 2013

Distance Measurements on Orthogonally Spin-Labeled Membrane Spanning WALP23 Polypeptides

Petra Lueders; Heidrun Jäger; Marcus A. Hemminga; Gunnar Jeschke; Maxim Yulikov

EPR-based Gd(III)-nitroxide distance measurements were performed on a series of membrane-incorporated orthogonally labeled WALP23 polypeptides. The obtained distance distributions were stable upon the change of detection frequency from 10 GHz (X-band) to 35 GHz (Q-band). The α-helical pitch of WALP23 polypeptide could be experimentally observed, despite the flexibility of the two spin labels. The spectroscopic properties of Gd(III) ions and nitroxide radicals allow detecting both types of paramagnetic species selectively in different EPR experiments. In particular, this spectroscopic selectivity allows for supplementing Gd(III)-nitroxide distance measurements with independent checks of polypeptide aggregation and with measurements of the local environment of the nitroxide spin labels. All mentioned additional checks do not require preparation of further samples, as it is the case in the experiments with pairs of identical nitroxide spin labels.


Journal of Biological Chemistry | 2014

Conformational cycle of the vitamin B12 ABC importer in liposomes detected by double electron-electron resonance (DEER).

Benesh Joseph; Vladimir M. Korkhov; Maxim Yulikov; Gunnar Jeschke; Enrica Bordignon

Background: Type II ABC importers transport diverse substrates into the cell. Results: EPR on BtuCD-F in liposomes shows the response of cytoplasmic gate II during nucleotide cycle in the presence of substrate. Conclusion: The cytoplasmic gate II closes with substrate and ATP as in the x-ray structure. Substrate can be released after hydrolysis. Significance: There is new insight into the mechanism of transport in membranes. Double electron-electron resonance is used here to investigate intermediates of the transport cycle of the Escherichia coli vitamin B12 ATP-binding cassette importer BtuCD-F. Previously, we showed the ATP-induced opening of the cytoplasmic gate I in TM5 helices, later confirmed by the AMP-PNP-bound BtuCD-F crystal structure. Here, other key residues are analyzed in TM10 helices (positions 307 and 322) and in the cytoplasmic gate II, i.e. the loop between TM2 and TM3 (positions 82 and 85). Without BtuF, binding of ATP induces detectable changes at positions 307 and 85 in BtuCD in liposomes. Together with BtuF, ATP triggers the closure of the cytoplasmic gate II in liposomes (reported by both positions 82 and 85). This forms a sealed cavity in the translocation channel in agreement with the AMP-PNP·BtuCD-F x-ray structure. When vitamin B12 and AMP-PNP are simultaneously present, the extent of complex formation is reduced, but the short 82–82 interspin distance detected indicates that the substrate does not affect the closed conformation of this gate. The existence of the BtuCD-F complex under these conditions is verified with spectroscopically orthogonal nitroxide and Gd(III)-based labels. The cytoplasmic gate II remains closed also in the vanadate-trapped state, but it reopens in the ADP-bound state of the complex. Therefore, we suggest that the substrate likely trapped in ATP·BtuCD-F can be released after ATP hydrolysis but before the occluded ADP-bound conformation is reached.


Journal of Physical Chemistry Letters | 2014

RIDME Spectroscopy with Gd(III) Centers

Sahand Razzaghi; Mian Qi; Anna Nalepa; Adelheid Godt; Gunnar Jeschke; Anton Savitsky; Maxim Yulikov

The relaxation induced dipolar modulation enhancement (RIDME) technique is applied at W-band microwave frequencies around 94 GHz to a pair of Gd(III) complexes that are connected by a rodlike spacer, and the extraction of the interspin distance distribution is discussed. A dipolar pattern derived from RIDME experimental data is a superposition of Pake-like dipolar patterns corresponding to the fundamental dipolar interaction and higher harmonics thereof. Intriguingly, the relative weights of the stretched patterns do not depend significantly on mixing time. As much larger modulation depths can be achieved than in double electron-electron resonance distance measurements at the same frequency, Gd(III)-Gd(III) RIDME may become attractive for structural characterization of biomacromolecules and biomolecular complexes.


Journal of the American Chemical Society | 2013

Solid-Phase Polarization Matrixes for Dynamic Nuclear Polarization from Homogeneously Distributed Radicals in Mesostructured Hybrid Silica Materials

David Gajan; Martin Schwarzwälder; Matthew P. Conley; Wolfram R. Grüning; Aaron J. Rossini; Alexandre Zagdoun; Moreno Lelli; Maxim Yulikov; Gunnar Jeschke; Claire Sauvée; Olivier Ouari; Paul Tordo; Laurent Veyre; Anne Lesage; Chloé Thieuleux; Lyndon Emsley; Christophe Copéret

Mesoporous hybrid silica-organic materials containing homogeneously distributed stable mono- or dinitroxide radicals covalently bound to the silica surface were developed as polarization matrixes for solid-state dynamic nuclear polarization (DNP) NMR experiments. For TEMPO-containing materials impregnated with water or 1,1,2,2-tetrachloroethane, enhancement factors of up to 36 were obtained at ∼100 K and 9.4 T without the need for a glass-forming additive. We show that the homogeneous radical distribution and the subtle balance between the concentration of radical in the material and the fraction of radicals at a sufficient inter-radical distance to promote the cross-effect are the main determinants for the DNP enhancements we obtain. The material, as well as an analogue containing the poorly soluble biradical bTUrea, is used as a polarizing matrix for DNP NMR experiments of solutions containing alanine and pyruvic acid. The analyte is separated from the polarization matrix by simple filtration.

Collaboration


Dive into the Maxim Yulikov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mian Qi

Bielefeld University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge