Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maxime R. Hervé is active.

Publication


Featured researches published by Maxime R. Hervé.


PLOS ONE | 2011

Invasive Plants and Enemy Release: Evolution of Trait Means and Trait Correlations in Ulex europaeus

Benjamin Hornoy; Michèle Tarayre; Maxime R. Hervé; Luc D. B. Gigord; Anne Atlan

Several hypotheses that attempt to explain invasive processes are based on the fact that plants have been introduced without their natural enemies. Among them, the EICA (Evolution of Increased Competitive Ability) hypothesis is the most influential. It states that, due to enemy release, exotic plants evolve a shift in resource allocation from defence to reproduction or growth. In the native range of the invasive species Ulex europaeus, traits involved in reproduction and growth have been shown to be highly variable and genetically correlated. Thus, in order to explore the joint evolution of life history traits and susceptibility to seed predation in this species, we investigated changes in both trait means and trait correlations. To do so, we compared plants from native and invaded regions grown in a common garden. According to the expectations of the EICA hypothesis, we observed an increase in seedling height. However, there was little change in other trait means. By contrast, correlations exhibited a clear pattern: the correlations between life history traits and infestation rate by seed predators were always weaker in the invaded range than in the native range. In U. europaeus, the role of enemy release in shaping life history traits thus appeared to imply trait correlations rather than trait means. In the invaded regions studied, the correlations involving infestation rates and key life history traits such as flowering phenology, growth and pod density were reduced, enabling more independent evolution of these key traits and potentially facilitating local adaptation to a wide range of environments. These results led us to hypothesise that a relaxation of genetic correlations may be implied in the expansion of invasive species.


Arthropod-plant Interactions | 2014

How oilseed rape (Brassica napus) genotype influences pollen beetle (Meligethes aeneus) oviposition

Maxime R. Hervé; Régine Delourme; Mélanie Leclair; Nathalie Marnet; Anne Marie Cortesero

Oviposition of phytophagous insects is determined either by adaptive behaviours allowing evaluation and response to host plant quality and/or by nutritional constraints occurring during oogenesis. Besides differences found among host plant species, plant intraspecific diversity can also affect insect oviposition. However, to date few studies have extensively investigated the factors accounting for the effect of this intraspecific variation. We addressed this question using oilseed rape (Brassica napus) and the pollen beetle (Meligethes aeneus), a phytophagous insect that uses the same plants and plant organs both for feeding and laying eggs. Our objectives were to test for a genotypic effect of oilseed rape on pollen beetle oviposition and identify the origin of the possible intergenotypic differences. We tested three hypotheses: oviposition is directly linked to (1) the amount of food eaten; (2) the nutritional quality of the food eaten; (3) a preference of females for certain plant genotypes. Results showed intergenotypic differences in both the number and the size of eggs laid. The factor that best accounted for most of these differences was the amount of food eaten. Nutritional quality of the pollen was of minor importance and females exhibited no preference among genotypes. These results reveal the importance of adult feeding on subsequent oviposition in phytophagous insects, an often neglected factor which partly determines the amount of energy available for oogenesis. Taking into account this factor may be of crucial importance in studies conducted on synovogenic insect species feeding on the same plant on which they lay eggs.


Journal of Chemical Ecology | 2014

Manipulating Feeding Stimulation to Protect Crops Against Insect Pests

Maxime R. Hervé; Régine Delourme; Antoine Gravot; Nathalie Marnet; Solenne Berardocco; Anne Marie Cortesero

Enhancing natural mechanisms of plant defense against herbivores is one of the possible strategies to protect cultivated species against insect pests. Host plant feeding stimulation, which results from phagostimulant and phagodeterrent effects of both primary and secondary metabolites, could play a key role in levels of damage caused to crop plants. We tested this hypothesis by comparing the feeding intensity of the pollen beetle Meligethes aeneus on six oilseed rape (Brassica napus) genotypes in a feeding experiment, and by assessing the content of possible phagostimulant and phagodeterrent compounds in tissues targeted by the insect (flower buds). For this purpose, several dozens of primary and secondary metabolites were quantified by a set of chromatographic techniques. Intergenotypic variability was found both in the feeding experiment and in the metabolic profile of plant tissues. Biochemical composition of the perianth was in particular highly correlated with insect damage. Only a few compounds explained this correlation, among which was sucrose, known to be highly phagostimulating. Further testing is needed to validate the suggested impact of the specific compounds we have identified. Nevertheless, our results open the way for a crop protection strategy based on artificial selection of key determinants of insect feeding stimulation.


Journal of Insect Behavior | 2015

Oviposition Behavior of the Pollen Beetle (Meligethes aeneus): A Functional Study

Maxime R. Hervé; Nathan Garcia; Marie Trabalon; Anne Le Ralec; Régine Delourme; Anne Marie Cortesero

The recognition by female phytophagous insects of a plant as a ‘good’ or ‘bad’ host for egg laying is based on a variety of cues (either visual, physical or chemical). Specific cues are often looked for during stereotypic oviposition behaviors, composed of several phases having their own function(s). In this study the oviposition behavior of the pollen beetle Meligethes aeneus, a pest which lays eggs in flower buds of only some brassicaceous plants, was described in detail on five oilseed rape (Brassica napus) genotypes. In parallel, setae borne by the ovipositor were characterized by scanning electron microscopy. Observations showed that the stereotypic oviposition sequence is functionally divided into three independent phases: external inspection, internal inspection and egg laying. The ovipositor plays a role in all phases by gaining information about external and internal bud parts. This role appears to be only physical since all the setae it bears are mechanoreceptors. Despite the fact that the pollen beetle is a specialist for oviposition, important variations in secondary metabolites that are typical of its host plant family (i.e., glucosinolates) on the bud did not influence clutch size. The crucial phase in the oviposition sequence seems to be the external inspection, during which poor and high-quality host plants are probably discriminated. Chemical information on bud surface is likely to be determinant in this process.


Arthropod-plant Interactions | 2016

Potential for oilseed rape resistance in pollen beetle control

Maxime R. Hervé; Anne Marie Cortesero

Breeding for plant resistance to insect pests is a classic strategy in integrated management, but it has never been developed for use against European pests of oilseed rape (Brassica napus) (OSR), especially one of the most damaging ones, the pollen beetle (Meligethes aeneus). In this paper we look at the three strategies that could be employed to improve OSR resistance (based on transgenes, relatives of B. napus or OSR natural variation) and review our current knowledge as to how these strategies could be put into practice. We identify the drawbacks which are specific to the pollen beetle that could impede breeding programs for resistance, and propose an approach to circumvent them. Finally, we detail the steps of the interaction between OSR and the pollen beetle that could be targeted in order to improve plant resistance (host plant location, adult survival, adult feeding, egg production and oviposition, larval development) and discuss their efficiency and durability potential.


Physiological Entomology | 2016

Plant genotype affects the quality of oilseed rape (Brassica napus) for adults and larvae of the pollen beetle (Meligethes aeneus)

Maxime R. Hervé; Régine Delourme; Anne Marie Cortesero

Plant quality is one of the main factors influencing the fitness of phytophagous insects. Plant quality can vary not only among genotypes of the same host plant species, but also relative to the insect sex or its life stage. In the present study, the performance of larvae and adults of the pollen beetle (Meligethes aeneus F., Coleoptera: Nitidulidae), a major insect pest of oilseed rape crops, is compared on six genotypes of oilseed rape (Brassica napus). All of the traits that are measured vary among genotypes, and comprise larval developmental duration, life span of unfed emerging adults and survival time of field‐sampled adults fed with pollen from the different genotypes. No correlation is found between insect performance and quantity of food available, showing that the quality of the food (i.e. pollen) is the fitness determinant for this insect species. Additionally, the performance of larvae and adults is also not correlated despite use of the same plant genotypes, suggesting that the determinants of pollen quality differ at least partially between both life stages. It is hypothesized that this may be a result of extensive differences in diet breadth between the life stages: larvae are specialists of brassicaceous plants, whereas adults are generalists. Finally, it is suggested that the manipulation of plant quality to increase pollen beetle development time may comprise a valuable strategy for favouring biological control by natural enemies of this pest; for example, as a result of extending the vulnerability window of larvae to attack by parasitoids.


PLOS ONE | 2016

Reducing the use of pesticides with site-specific application: the chemical control of Rhizoctonia solani as a case of study for the management of soil- borne diseases

Ronan Le Cointe; Thomas E. Simon; Patrick Delarue; Maxime R. Hervé; Melen Leclerc; Sylvain Poggi

Reducing our reliance on pesticides is an essential step towards the sustainability of agricultural production. One approach involves the rational use of pesticides combined with innovative crop management. Most control strategies currently focus on the temporal aspect of epidemics, e.g. determining the optimal date for spraying, regardless of the spatial mechanics and ecology of disease spread. Designing innovative pest management strategies incorporating the spatial aspect of epidemics involves thorough knowledge on how disease control affects the life-history traits of the pathogen. In this study, using Rhizoctonia solani/Raphanus sativus as an example of a soil-borne pathosystem, we investigated the effects of a chemical control currently used by growers, Monceren® L, on key epidemiological components (saprotrophic spread and infectivity). We tested the potential “shield effect” of Monceren® L on pathogenic spread in a site-specific application context, i.e. the efficiency of this chemical to contain the spread of the fungus from an infected host when application is spatially localized, in our case, a strip placed between the infected host and a recipient bait. Our results showed that Monceren® L mainly inhibits the saprotrophic spread of the fungus in soil and may prevent the fungus from reaching its host plant. However, perhaps surprisingly we did not detect any significant effect of the fungicide on the pathogen infectivity. Finally, highly localized application of the fungicide—a narrow strip of soil (12.5 mm wide) sprayed with Monceren® L—significantly decreased local transmission of the pathogen, suggesting lowered risk of occurrence of invasive epidemics. Our results highlight that detailed knowledge on epidemiological processes could contribute to the design of innovative management strategies based on precision agriculture tools to improve the efficacy of disease control and reduce pesticide use.


PLOS ONE | 2014

Interplay between parasitism and host ontogenic resistance in the epidemiology of the soil-borne plant pathogen Rhizoctonia solani.

Thomas E. Simon; Ronan Le Cointe; Patrick Delarue; Stéphanie Morlière; Françoise Montfort; Maxime R. Hervé; Sylvain Poggi

Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed.


Journal of Applied Entomology | 2017

Potential biases in screening for plant resistance to insect pests: an illustration with oilseed rape

Maxime R. Hervé; Mélanie Leclair; Laëtitia Frat; Chrystelle Paty; David Renaud; Anne Marie Cortesero

Breeding to increase crop resistance is a common strategy to decrease damage caused by insect pests, especially in the current context where insecticides are becoming at the same time less accepted by society and less efficient because of widespread pest resistance. The main bottleneck of this strategy is phenotyping. Although simple, high‐throughput methods have been proposed which could be highly useful, they may raise conceptual issues. Using field and laboratory experiments on oilseed rape (Brassica napus) and the pollen beetle (Brassicogethes aeneus syn. Meligethes aeneus), we illustrated possible difficulties with this approach: (i) field screenings might not represent the real attractiveness of the tested genotypes; (ii) plant phenology or spatial organization of the genotypes might bias field screening results; (iii) experiments based on detached plant parts (here, single flower buds or anthers) might not allow to infer the plant–insect relationship of the whole plant. We propose ways to better take these risks into account.


Hydrobiologia | 2016

Spatial distribution and impact of the gill-parasitic Mazocraes alosae (Monogenea Polyopisthocotylea) on Alosa alosa and A. fallax (Actinopterygii, Clupeidae)

Claudia Gérard; Maxime R. Hervé; Elodie Réveillac; Anthony Acou

Are the distribution of Mazocraes alosae and its impact on the host similar between Alosa alosa and A. fallax according to their resemblances? Parasites were numbered on each gill of shads sampled in North-East Atlantic coastal waters and connected rivers. Their impact on host condition was measured using girth, gonado-somatic ratio, C/N ratio, and Fulton’s K. Prevalence and mean intensity of M. alosae were significantly higher for A. alosa than for A. fallax, including in sympatric conditions. The mean intensity varied among sites whatever fish species; it was higher in coastal–estuarine versus fresh waters only for A. fallax. The distribution of M. alosae was aggregated in the host population whatever species. At the host individual level, some gills (second and third for A. alosa, second for A. fallax) were significantly more inhabited than others, probably in relation with larger water volumes flowing on these gills and mazocraeid sedentary lifestyle. Despite high prevalence and intensity, no negative impact of M. alosae was demonstrated on the host condition whatever the index considered. Our study underlines the major occurrence of M. alosae on shads and the potential use of such benign parasite as biological tag to discriminate closely related host species.

Collaboration


Dive into the Maxime R. Hervé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Régine Delourme

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Marnet

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge