Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maxime Ratinier is active.

Publication


Featured researches published by Maxime Ratinier.


Journal of Biological Chemistry | 2006

Structural Determinants That Target the Hepatitis C Virus Core Protein to Lipid Droplets

Steeve Boulant; Roland Montserret; R. Graham Hope; Maxime Ratinier; Paul Targett-Adams; Jean-Pierre Lavergne; Francoise Penin; John McLauchlan

Hepatitis C virus core protein is targeted to lipid droplets, which serve as intracellular storage organelles, by its C-terminal domain, termed D2. From circular dichroism and nuclear magnetic resonance analyses, we demonstrate that the major structural elements within D2 consist of two amphipathic α-helices (Helix I and Helix II) separated by a hydrophobic loop. Both helices require a hydrophobic environment for folding, indicating that lipid interactions contribute to their structural integrity. Mutational studies revealed that a combination of Helix I, the hydrophobic loop, and Helix II is essential for efficient lipid droplet association and pointed to an in-plane membrane interaction of the two helices at the phospholipid layer interface. Aside from lipid droplet association, membrane interaction of D2 is necessary for folding and stability of core following maturation at the endoplasmic reticulum membrane by signal peptide peptidase. These studies identify critical determinants within a targeting domain that enable trafficking and attachment of a viral protein to lipid droplets. They also serve as a unique model for elucidating the specificity of protein-lipid interactions between two membrane-bound organelles.


PLOS Pathogens | 2011

Identification and characterization of a novel non-structural protein of bluetongue virus.

Maxime Ratinier; Marco Caporale; Matthew Golder; Giulia Franzoni; Kathryn J. Allan; Sandro Filipe Nunes; Alessia Armezzani; Amr Bayoumy; Frazer J. Rixon; Andrew E. Shaw; Massimo Palmarini

Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell.


Journal of Virology | 2013

Reassortment between Two Serologically Unrelated Bluetongue Virus Strains Is Flexible and Can Involve any Genome Segment

Andrew E. Shaw; Maxime Ratinier; Sandro Filipe Nunes; Kyriaki Nomikou; Marco Caporale; Matthew Golder; Kathryn J. Allan; Claude Hamers; Pascal Hudelet; Stéphan Zientara; Emmanuel Bréard; Peter P. C. Mertens; Massimo Palmarini

ABSTRACT Coinfection of a cell by two different strains of a segmented virus can give rise to a “reassortant” with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous “backbone.” To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.


Journal of Virology | 2013

RNA Interference Targets Arbovirus Replication in Culicoides Cells

Esther Schnettler; Maxime Ratinier; Mick Watson; Andrew E. Shaw; Melanie McFarlane; Mariana Varela; Richard M. Elliott; Massimo Palmarini; Alain Kohl

ABSTRACT Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses.


Journal of General Virology | 2008

Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1

Maxime Ratinier; Steeve Boulant; Christophe Combet; Paul Targett-Adams; John McLauchlan; Jean-Pierre Lavergne

Since the first report of frameshifting in HCV-1, its sequence has been the paradigm for examining the mechanism that directs alternative translation of the hepatitis C virus (HCV) genome. The region encoding the core protein from this strain contains a cluster of 10 adenines at codons 8-11, which is thought to direct programmed ribosomal frameshifting (PRF), but formal evidence for this process has not been established unequivocally. To identify the mechanisms of frameshifting, this study used a bicistronic dual luciferase reporter system in a coupled transcription/translation in vitro assay. This approach revealed +1 as well as -1 frameshifting, whereas point mutations, selectively introduced between codons 8 and 11, demonstrated that PRF did not readily account for frameshifting in strain HCV-1. Sequence analysis of cDNAs derived from RNA transcribed by T7 RNA polymerase in the dual luciferase reporter system, as well as in both a subgenomic replicon and an infectious clone derived from strain JFH1, identified additions and deletions of adenines between codons 8 and 11 due to transcriptional slippage (TS). Moreover, RNA isolated from cells infected with virus generated by JFH1 containing the A-rich tract also contained heterogeneity in the adenine sequence, strongly suggesting TS by the NS5B viral polymerase. These findings have important implications for insight into frameshifting events in HCV-1 and demonstrate for the first time the involvement of transcriptional slippage in this recoding event.


Journal of Virology | 2014

A Synthetic Biology Approach for a Vaccine Platform against Known and Newly Emerging Serotypes of Bluetongue Virus

Sandro Filipe Nunes; Claude Hamers; Maxime Ratinier; Andrew E. Shaw; Sylvie Brunet; Pascal Hudelet; Massimo Palmarini

ABSTRACT Bluetongue is one of the major infectious diseases of ruminants and is caused by bluetongue virus (BTV), an arbovirus existing in nature in at least 26 distinct serotypes. Here, we describe the development of a vaccine platform for BTV. The advent of synthetic biology approaches and the development of reverse genetics systems has allowed the rapid and reliable design and production of pathogen genomes which can be subsequently manipulated for vaccine production. We describe BTV vaccines based on “synthetic” viruses in which the outer core proteins of different BTV serotypes are incorporated into a common tissue-culture-adapted backbone. As a means of validation for this approach, we selected two BTV-8 synthetic reassortants and demonstrated their ability to protect sheep against virulent BTV-8 challenge. In addition to further highlight the possibilities of genome manipulation for vaccine production, we also designed and rescued a synthetic BTV chimera containing a VP2 protein, including regions derived from both BTV-1 and BTV-8. Interestingly, while the parental viruses were neutralized only by homologous antisera, the chimeric proteins could be neutralized by both BTV-1 and BTV-8 antisera. These data suggest that neutralizing epitopes are present in different areas of the BTV VP2 and likely “bivalent” strains eliciting neutralizing antibodies for multiple strains can be obtained. IMPORTANCE Overall, this vaccine platform can significantly reduce the time taken from the identification of new BTV strains to the development and production of new vaccines, since the viral genomes of these viruses can be entirely synthesized in vitro. In addition, these vaccines can be brought quickly into the market because they alter the approach, but not the final product, of existing commercial products.


Journal of General Virology | 2015

Characterization of a second open reading frame in genome segment 10 of bluetongue virus

Meredith Stewart; Alexandra Hardy; Gerald Barry; Rute Maria Pinto; Marco Caporale; Eleonora Melzi; Joseph Hughes; Aislynn Taggart; Aislynn Janowicz; María José Varela; Maxime Ratinier; Massimo Palmarini

Viruses have often evolved overlapping reading frames in order to maximize their coding capacity. Until recently, the segmented dsRNA genome of viruses of the Orbivirus genus was thought to be monocistronic, but the identification of the bluetongue virus (BTV) NS4 protein changed this assumption. A small ORF in segment 10, overlapping the NS3 ORF in the +1 position, is maintained in more than 300 strains of the 27 different BTV serotypes and in more than 200 strains of the phylogenetically related African horse sickness virus (AHSV). In BTV, this ORF (named S10-ORF2 in this study) encodes a putative protein 50–59 residues in length and appears to be under strong positive selection. HA- or GFP-tagged versions of S10-ORF2 expressed from transfected plasmids localized within the nucleoli of transfected cells, unless a putative nucleolar localization signal was mutated. S10-ORF2 inhibited gene expression, but not RNA translation, in transient transfection reporter assays. In both mammalian and insect cells, BTV S10-ORF2 deletion mutants (BTV8ΔS10-ORF2) displayed similar replication kinetics to wt virus. In vivo, S10-ORF2 deletion mutants were pathogenic in mouse models of disease. Although further evidence is required for S10-ORF2 expression during infection, the data presented provide an initial characterization of this ORF.


Journal of Virology | 2012

Drosophila melanogaster as a Model Organism for Bluetongue Virus Replication and Tropism

Andrew E. Shaw; Eva Veronesi; Guillemette Maurin; Najate Ftaich; Francois Guiguen; Frazer J. Rixon; Maxime Ratinier; Peter P. C. Mertens; Simon Carpenter; Massimo Palmarini; Christophe Terzian; Frederick Arnaud

ABSTRACT Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species.


Journal of General Virology | 2014

NSs protein of Schmallenberg virus counteracts the antiviral response of the cell by inhibiting its transcriptional machinery

Gerald Barry; Mariana Varela; Maxime Ratinier; Anne-Lie Blomström; Marco Caporale; Frauke Seehusen; Kerstin Hahn; Esther Schnettler; Wolfgang Baumgärtner; Alain Kohl; Massimo Palmarini

Bunyaviruses have evolved a variety of strategies to counteract the antiviral defence systems of mammalian cells. Here we show that the NSs protein of Schmallenberg virus (SBV) induces the degradation of the RPB1 subunit of RNA polymerase II and consequently inhibits global cellular protein synthesis and the antiviral response. In addition, we show that the SBV NSs protein enhances apoptosis in vitro and possibly in vivo, suggesting that this protein could be involved in SBV pathogenesis in different ways.


Journal of Virology | 2015

Multiple Genome Segments Determine Virulence of Bluetongue Virus Serotype 8

Anna Janowicz; Marco Caporale; Andrew E. Shaw; Salvatore Gulletta; Luigina Di Gialleonardo; Maxime Ratinier; Massimo Palmarini

ABSTRACT Bluetongue virus (BTV) causes bluetongue, a major hemorrhagic disease of ruminants. In order to investigate the molecular determinants of BTV virulence, we used a BTV8 strain minimally passaged in tissue culture (termed BTV8L in this study) and a derivative strain passaged extensively in tissue culture (BTV8H) in in vitro and in vivo studies. BTV8L was pathogenic in both IFNAR−/− mice and in sheep, while BTV8H was attenuated in both species. To identify genetic changes which led to BTV8H attenuation, we generated 34 reassortants between BTV8L and BTV8H. We found that partial attenuation of BTV8L in IFNAR−/− mice was achieved by simply replacing genomic segment 2 (Seg2, encoding VP2) or Seg10 (encoding NS3) with the BTV8H homologous segments. Fully attenuated viruses required at least two genome segments from BTV8H, including Seg2 with either Seg1 (encoding VP1), Seg6 (encoding VP6 and NS4), or Seg10 (encoding NS3). Conversely, full reversion of virulence of BTV8H required at least five genomic segments of BTV8L. We also demonstrated that BTV8H acquired an increased affinity for glycosaminoglycan receptors during passaging in cell culture due to mutations in its VP2 protein. Replication of BTV8H was relatively poor in interferon (IFN)-competent primary ovine endothelial cells compared to replication of BTV8L, and this phenotype was determined by several viral genomic segments, including Seg4 and Seg9. This study demonstrated that multiple viral proteins contribute to BTV8 virulence. VP2 and NS3 are primary determinants of BTV pathogenesis, but VP1, VP5, VP4, VP6, and VP7 also contribute to virulence. IMPORTANCE Bluetongue is one of the major infectious diseases of ruminants, and it is listed as a notifiable disease by the World Organization for Animal Health (OIE). The clinical outcome of BTV infection varies considerably and depends on environmental and host- and virus-specific factors. Over the years, BTV serotypes/strains with various degrees of virulence (including nonpathogenic strains) have been described in different geographical locations. However, no data are available to correlate the BTV genotype to virulence. This study shows that BTV virulence is determined by different viral genomic segments. The data obtained will help to characterize thoroughly the pathogenesis of bluetongue. The possibility to determine the pathogenicity of virus isolates on the basis of their genome sequences will help in the design of control strategies that fit the risk posed by new emerging BTV strains.

Collaboration


Dive into the Maxime Ratinier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald Barry

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Terzian

École pratique des hautes études

View shared research outputs
Researchain Logo
Decentralizing Knowledge