Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maximilian Diehn is active.

Publication


Featured researches published by Maximilian Diehn.


Nature | 2009

Association of reactive oxygen species levels and radioresistance in cancer stem cells.

Maximilian Diehn; Robert W. Cho; Neethan Lobo; Tomer Kalisky; Mary Jo Dorie; Angela N. Kulp; Dalong Qian; Jessica Lam; Laurie E. Ailles; Manzhi Wong; Benzion Joshua; Michael Kaplan; Irene Wapnir; Frederick M. Dirbas; George Somlo; Carlos Garberoglio; Benjamin Paz; Jeannie Shen; Sean K. Lau; Stephen R. Quake; J. Martin Brown; Irving L. Weissman; Michael F. Clarke

The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.


Cell | 2009

Downregulation of miRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells

Yohei Shimono; Maider Zabala; Robert W. Cho; Neethan Lobo; Piero Dalerba; Dalong Qian; Maximilian Diehn; Huiping Liu; Sarita Panula; Eric Chiao; Frederick M. Dirbas; George Somlo; Renee A. Reijo Pera; Kaiqin Lao; Michael F. Clarke

Human breast tumors contain a breast cancer stem cell (BCSC) population with properties reminiscent of normal stem cells. We found 37 microRNAs that were differentially expressed between human BCSCs and nontumorigenic cancer cells. Three clusters, miR-200c-141, miR-200b-200a-429, and miR-183-96-182 were downregulated in human BCSCs, normal human and murine mammary stem/progenitor cells, and embryonal carcinoma cells. Expression of BMI1, a known regulator of stem cell self-renewal, was modulated by miR-200c. miR-200c inhibited the clonal expansion of breast cancer cells and suppressed the growth of embryonal carcinoma cells in vitro. Most importantly, miR-200c strongly suppressed the ability of normal mammary stem cells to form mammary ducts and tumor formation driven by human BCSCs in vivo. The coordinated downregulation of three microRNA clusters and the similar functional regulation of clonal expansion by miR-200c provide a molecular link that connects BCSCs with normal stem cells.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Individuality and variation in gene expression patterns in human blood.

Adeline R. Whitney; Maximilian Diehn; Stephen J. Popper; Ash A. Alizadeh; Jennifer C. Boldrick; David A. Relman; Patrick O. Brown

The nature and extent of interindividual and temporal variation in gene expression patterns in specific cells and tissues is an important and relatively unexplored issue in human biology. We surveyed variation in gene expression patterns in peripheral blood from 75 healthy volunteers by using cDNA microarrays. Characterization of the variation in gene expression in healthy tissue is an essential foundation for the recognition and interpretation of the changes in these patterns associated with infections and other diseases, and peripheral blood was selected because it is a uniquely accessible tissue in which to examine this variation in patients or healthy volunteers in a clinical setting. Specific features of interindividual variation in gene expression patterns in peripheral blood could be traced to variation in the relative proportions of specific blood cell subsets; other features were correlated with gender, age, and the time of day at which the sample was taken. An analysis of multiple sequential samples from the same individuals allowed us to discern donor-specific patterns of gene expression. These data help to define human individuality and provide a database with which disease-associated gene expression patterns can be compared.


Nature Medicine | 2014

An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage.

Aaron M. Newman; Scott V. Bratman; Jacqueline To; Jacob Wynne; Neville Eclov; L.A. Modlin; Chih Long Liu; Joel W. Neal; Heather A. Wakelee; Robert E. Merritt; Joseph B. Shrager; Billy W. Loo; Ash A. Alizadeh; Maximilian Diehn

Circulating tumor DNA (ctDNA) is a promising biomarker for noninvasive assessment of cancer burden, but existing ctDNA detection methods have insufficient sensitivity or patient coverage for broad clinical applicability. Here we introduce cancer personalized profiling by deep sequencing (CAPP-Seq), an economical and ultrasensitive method for quantifying ctDNA. We implemented CAPP-Seq for non–small-cell lung cancer (NSCLC) with a design covering multiple classes of somatic alterations that identified mutations in >95% of tumors. We detected ctDNA in 100% of patients with stage II–IV NSCLC and in 50% of patients with stage I, with 96% specificity for mutant allele fractions down to ∼0.02%. Levels of ctDNA were highly correlated with tumor volume and distinguished between residual disease and treatment-related imaging changes, and measurement of ctDNA levels allowed for earlier response assessment than radiographic approaches. Finally, we evaluated biopsy-free tumor screening and genotyping with CAPP-Seq. We envision that CAPP-Seq could be routinely applied clinically to detect and monitor diverse malignancies, thus facilitating personalized cancer therapy.


Nucleic Acids Research | 2003

SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data

Maximilian Diehn; Gavin Sherlock; Gail Binkley; Heng Jin; John C. Matese; Tina Hernandez-Boussard; Christian A. Rees; J. Michael Cherry; David Botstein; Patrick O. Brown; Ash A. Alizadeh

The explosion in the number of functional genomic datasets generated with tools such as DNA microarrays has created a critical need for resources that facilitate the interpretation of large-scale biological data. SOURCE is a web-based database that brings together information from a broad range of resources, and provides it in manner particularly useful for genome-scale analyses. SOURCEs GeneReports include aliases, chromosomal location, functional descriptions, GeneOntology annotations, gene expression data, and links to external databases. We curate published microarray gene expression datasets and allow users to rapidly identify sets of co-regulated genes across a variety of tissues and a large number of conditions using a simple and intuitive interface. SOURCE provides content both in gene and cDNA clone-centric pages, and thus simplifies analysis of datasets generated using cDNA microarrays. SOURCE is continuously updated and contains the most recent and accurate information available for human, mouse, and rat genes. By allowing dynamic linking to individual gene or clone reports, SOURCE facilitates browsing of large genomic datasets. Finally, SOURCEs batch interface allows rapid extraction of data for thousands of genes or clones at once and thus facilitates statistical analyses such as assessing the enrichment of functional attributes within clusters of genes. SOURCE is available at http://source.stanford.edu.


Nature Methods | 2015

Robust enumeration of cell subsets from tissue expression profiles

Aaron M. Newman; Chih Long Liu; Michael R. Green; Andrew J. Gentles; Weiguo Feng; Yue Xu; Chuong D. Hoang; Maximilian Diehn; Ash A. Alizadeh

We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu/).


Nature Medicine | 2015

The prognostic landscape of genes and infiltrating immune cells across human cancers

Andrew J. Gentles; Aaron M. Newman; Chih Long Liu; Scott V. Bratman; Weiguo Feng; Dongkyoon Kim; Viswam S. Nair; Yue Xu; Amanda Khuong; Chuong D. Hoang; Maximilian Diehn; Robert B. West; Sylvia K. Plevritis; Ash A. Alizadeh

Molecular profiles of tumors and tumor-associated cells hold great promise as biomarkers of clinical outcomes. However, existing data sets are fragmented and difficult to analyze systematically. Here we present a pan-cancer resource and meta-analysis of expression signatures from ∼18,000 human tumors with overall survival outcomes across 39 malignancies. By using this resource, we identified a forkhead box MI (FOXM1) regulatory network as a major predictor of adverse outcomes, and we found that expression of favorably prognostic genes, including KLRB1 (encoding CD161), largely reflect tumor-associated leukocytes. By applying CIBERSORT, a computational approach for inferring leukocyte representation in bulk tumor transcriptomes, we identified complex associations between 22 distinct leukocyte subsets and cancer survival. For example, tumor-associated neutrophil and plasma cell signatures emerged as significant but opposite predictors of survival for diverse solid tumors, including breast and lung adenocarcinomas. This resource and associated analytical tools (http://precog.stanford.edu) may help delineate prognostic genes and leukocyte subsets within and across cancers, shed light on the impact of tumor heterogeneity on cancer outcomes, and facilitate the discovery of biomarkers and therapeutic targets.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Stereotyped and specific gene expression programs in human innate immune responses to bacteria.

Jennifer C. Boldrick; Ash A. Alizadeh; Maximilian Diehn; Sandrine Dudoit; Chih Long Liu; Christopher E. Belcher; David Botstein; Louis M. Staudt; Patrick O. Brown; David A. Relman

The innate immune response is crucial for defense against microbial pathogens. To investigate the molecular choreography of this response, we carried out a systematic examination of the gene expression program in human peripheral blood mononuclear cells responding to bacteria and bacterial products. We found a remarkably stereotyped program of gene expression induced by bacterial lipopolysaccharide and diverse killed bacteria. An intricately choreographed expression program devoted to communication between cells was a prominent feature of the response. Other features suggested a molecular program for commitment of antigen-presenting cells to antigens captured in the context of bacterial infection. Despite the striking similarities, there were qualitative and quantitative differences in the responses to different bacteria. Modulation of this host-response program by bacterial virulence mechanisms was an important source of variation in the response to different bacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation

Maximilian Diehn; Ash A. Alizadeh; Oliver J. Rando; Chih Long Liu; Kryn Stankunas; David Botstein; Gerald R. Crabtree; Patrick O. Brown

Optimal activation of T cells requires effective occupancy of both the antigen-specific T cell receptor and a second coreceptor such as CD28. We used cDNA microarrays to characterize the genomic expression program in human peripheral T cells responding to stimulation of these receptors. We found that CD28 agonists alone elicited few, but reproducible, changes in gene expression, whereas CD3 agonists elicited a multifaceted temporally choreographed gene expression program. The principal effect of simultaneous engagement of CD28 was to increase the amplitude of the CD3 transcriptional response. The induced genes whose expression was most enhanced by costimulation were significantly enriched for known targets of nuclear factor of activated T cells (NFAT) transcription factors. This enhancement was nearly abolished by blocking the nuclear translocation of NFATc by using the calcineurin inhibitor FK506. CD28 signaling promoted phosphorylation, and thus inactivation, of the NFAT nuclear export kinase glycogen synthase kinase-3 (GSK3), coincident with enhanced dephosphorylation of NFATc proteins. These results provide a detailed picture of the transcriptional program of T cell activation and suggest that enhancement of transcriptional activation by NFAT, through inhibition of its nuclear export, plays a key role in mediating the CD28 costimulatory signal.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Identification of noninvasive imaging surrogates for brain tumor gene-expression modules

Maximilian Diehn; Christine Nardini; David S. Wang; Susan L. McGovern; Mahesh V. Jayaraman; Yu Liang; Kenneth D. Aldape; Soonmee Cha; Michael D. Kuo

Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor in adults. We combined neuroimaging and DNA microarray analysis to create a multidimensional map of gene-expression patterns in GBM that provided clinically relevant insights into tumor biology. Tumor contrast enhancement and mass effect predicted activation of specific hypoxia and proliferation gene-expression programs, respectively. Overexpression of EGFR, a receptor tyrosine kinase and potential therapeutic target, was also directly inferred by neuroimaging and was validated in an independent set of tumors by immunohistochemistry. Furthermore, imaging provided insights into the intratumoral distribution of gene-expression patterns within GBM. Most notably, an “infiltrative” imaging phenotype was identified that predicted patient outcome. Patients with this imaging phenotype had a greater tendency toward having multiple tumor foci and demonstrated significantly shorter survival than their counterparts. Our findings provide an in vivo portrait of genome-wide gene expression in GBM and offer a potential strategy for noninvasively selecting patients who may be candidates for individualized therapies.

Collaboration


Dive into the Maximilian Diehn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.B. Shultz

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge