Maximilian W. Popp
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maximilian W. Popp.
Angewandte Chemie | 2011
Maximilian W. Popp; Hidde L. Ploegh
Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site-specifically break a peptide bond and then reform a new bond with an incoming nucleophile that makes sortase an attractive tool for protein engineering. This technique has been adopted for a range of applications, from chemistry-based to cell biology and technology. In this Minireview we provide a brief overview of the biology of sortase enzymes and current applications in protein engineering. We identify areas that lend themselves to further innovation and that suggest new applications.
Journal of the American Chemical Society | 2009
John M. Antos; Guo-Liang Chew; Carla P. Guimaraes; Nicholas C. Yoder; Gijsbert M. Grotenbreg; Maximilian W. Popp; Hidde L. Ploegh
The unique reactivity of two sortase enzymes, SrtAstaph from Staphylococcus aureus and SrtAstrep from Streptococcus pyogenes, is exploited for site-specific labeling of a single polypeptide with different labels at its N and C termini. SrtAstrep is used to label the protein’s C terminus at an LPXTG site with a fluorescently labeled dialanine nucleophile. Selective N-terminal labeling of proteins containing N-terminal glycine residues is achieved using SrtAstaph and LPXT derivatives. The generality of N-terminal labeling with SrtAstaph is demonstrated by near-quantitative labeling of multiple protein substrates with excellent site specificity.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Maximilian W. Popp; Stephanie K. Dougan; Tzu-Ying Chuang; Eric Spooner; Hidde L. Ploegh
Recombinant protein therapeutics often suffer from short circulating half-life and poor stability, necessitating multiple injections and resulting in limited shelf-life. Conjugation to polyethylene glycol chains (PEG) extends the circulatory half-life of many proteins, but the methods for attachment often lack specificity, resulting in loss of biological activity. Using four-helix bundle cytokines as an example, we present a general platform that uses sortase-mediated transpeptidation to facilitate site-specific attachment of PEG to extend cytokine half-life with full retention of biological activity. Covalently joining the N and C termini of proteins to obtain circular polypeptides, again executed using sortase, increases thermal stability. We combined both PEGylation and circularization by exploiting two distinct sortase enzymes and the use of a molecular suture that allows both site-specific PEGylation and covalent closure. The method developed is general, uses a set of easily accessible reagents, and should be applicable to a wide variety of proteins, provided that their termini are not involved in receptor binding or function.
Journal of Biological Chemistry | 2009
John M. Antos; Maximilian W. Popp; Robert Ernst; Guo-Liang Chew; Eric Spooner; Hidde L. Ploegh
Folding and stability are parameters that control protein behavior. The possibility of conferring additional stability on proteins has implications for their use in vivo and for their structural analysis in the laboratory. Cyclic polypeptides ranging in size from 14 to 78 amino acids occur naturally and often show enhanced resistance toward denaturation and proteolysis when compared with their linear counterparts. Native chemical ligation and intein-based methods allow production of circular derivatives of larger proteins, resulting in improved stability and refolding properties. Here we show that circular proteins can be made reversibly with excellent efficiency by means of a sortase-catalyzed cyclization reaction, requiring only minimal modification of the protein to be circularized.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Alexandre Esteban; Maximilian W. Popp; Valmik K. Vyas; Karin Strijbis; Hidde L. Ploegh; Gerald R. Fink
Dectin-1, the major β-glucan receptor in leukocytes, triggers an effective immune response upon fungal recognition. Here we use sortase-mediated transpeptidation, a technique that allows placement of a variety of probes on a polypeptide backbone, to monitor the behavior of labeled functional dectin-1 in live cells with and without fungal challenge. Installation of probes on dectin-1 by sortagging permitted highly specific visualization of functional protein on the cell surface and its subsequent internalization upon ligand presentation. Retrieval of sortagged dectin-1 expressed in macrophages uncovered a unique interaction between dectin-1 and galectin-3 that functions in the proinflammatory response of macrophages to pathogenic fungi. When macrophages expressing dectin-1 are exposed to Candida albicans mutants with increased exposure of β-glucan, the loss of galectin-3 dramatically accentuates the failure to trigger an appropriate TNF-α response.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Martin D. Witte; Juan J. Cragnolini; Stephanie K. Dougan; Nicholas C. Yoder; Maximilian W. Popp; Hidde L. Ploegh
Standard genetic approaches allow the production of protein composites by fusion of polypeptides in head-to-tail fashion. Some applications would benefit from constructions that are genetically impossible, such as the site-specific linkage of proteins via their N or C termini, when a remaining free terminus is required for biological activity. We developed a method for the production of N-to-N and C-to-C dimers, with full retention of the biological activity of both fusion partners and without inflicting chemical damage on the proteins to be joined. We use sortase A to install on the N or C terminus of proteins of interest the requisite modifications to execute a strain-promoted copper-free cycloaddition and show that the ensuing ligation proceeds efficiently. Applied here to protein–protein fusions, the method reported can be extended to connecting proteins with any entity of interest.
Current protocols in protein science | 2009
Maximilian W. Popp; John M. Antos; Hidde L. Ploegh
Creation of functional protein bioconjugates demands methods for attaching a diverse array of probes to target proteins with high specificity, under mild conditions. The sortase A transpeptidase enzyme from Staphylococcus aureus catalyzes the cleavage of a short 5‐aa recognition sequence (LPXTG) with the concomitant formation of an amide linkage between an oligoglycine peptide and the target protein. By functionalizing the oligoglycine peptide, it is possible to incorporate reporters into target proteins in a site‐specific fashion. This reaction is applicable to proteins in solution and on the living cell surface. The method described in this unit only requires incubation of the target protein, which has been engineered to contain a sortase recognition site either at the C terminus or within solvent‐accessible loops, with a purified sortase enzyme and a suitably functionalized oligoglycine peptide. Curr. Protoc. Protein Sci. 56:15.3.1‐15.3.9.
Journal of Cell Biology | 2011
Carla P. Guimaraes; Jan E. Carette; Malini Varadarajan; John M. Antos; Maximilian W. Popp; Eric Spooner; Thijn R. Brummelkamp; Hidde L. Ploegh
A novel labeling strategy is applied to cholera toxin subunit A1 in the context of a pre-assembled holotoxin allowing tracking of its intracellular trafficking pathway and identification of host proteins involved in cell intoxication.
Bioconjugate Chemistry | 2012
Gaelen T. Hess; Juan J. Cragnolini; Maximilian W. Popp; Mark A. Allen; Stephanie K. Dougan; Eric Spooner; Hidde L. Ploegh; Angela M. Belcher; Carla P. Guimaraes
We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, biotin) to correctly folded proteins (e.g., GFP, antibodies, streptavidin) in a site-specific manner, and with yields that surpass those of any reported using phage display technology. A case in point is modification of pVIII. While a phage vector limits the size of the insert into pVIII to a few amino acids, a phagemid system limits the number of copies actually displayed at the surface of M13. Using sortase-based reactions, a 100-fold increase in the efficiency of display of GFP onto pVIII is achieved. Taking advantage of orthogonal sortases, we can simultaneously target two distinct capsid proteins in the same phage particle and maintain excellent specificity of labeling. As demonstrated in this work, this is a simple and effective method for creating a variety of structures, thus expanding the use of M13 for materials science applications and as a biological tool.
Journal of Biological Chemistry | 2009
Maximilian W. Popp; Katerina Artavanis-Tsakonas; Hidde L. Ploegh
Determining how deubiquitinating enzymes discriminate between ubiquitin-conjugated substrates is critical to understand their function. Through application of a novel protein cleavage and tagging technique, sortagging, we show that human UCHL3 and the Plasmodium falciparum homologue, members of the ubiquitin C-terminal hydrolase family, use a unique active site crossover loop to restrict access of bulky ubiquitin adducts to the active site. Although it provides connectivity for critical active site residues in UCHL3, physical integrity of the crossover loop is dispensable for catalysis. By enlarging the active site crossover loop, we have constructed gain-of-function mutants that can accept substrates that the parent enzyme cannot, including ubiquitin chains of various linkages.