Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maximilian Wiesmann is active.

Publication


Featured researches published by Maximilian Wiesmann.


Journal of Nutritional Biochemistry | 2015

Impact of dietary n-3 polyunsaturated fatty acids on cognition, motor skills and hippocampal neurogenesis in developing C57BL/6J mice

Carola I.F. Janssen; Valerio Zerbi; Martina P.C. Mutsaers; Bas S.W. de Jong; Maximilian Wiesmann; Ilse A.C. Arnoldussen; Bram Geenen; Arend Heerschap; Frits A.J. Muskiet; Zeina E. Jouni; Eric van Tol; Gabriele Gross; Judith R. Homberg; Brian M. Berg; Amanda J. Kiliaan

Maternal intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is critical during perinatal development of the brain. Docosahexaenoic acid (DHA) is the most abundant n-3 PUFA in the brain and influences neuronal membrane function and neuroprotection. The present study aims to assess the effect of dietary n-3 PUFA availability during the gestational and postnatal period on cognition, brain metabolism and neurohistology in C57BL/6J mice. Female wild-type C57BL/6J mice at day 0 of gestation were randomly assigned to either an n-3 PUFA deficient diet (0.05% of total fatty acids) or an n-3 PUFA adequate diet (3.83% of total fatty acids) containing preformed DHA and its precursor α-linolenic acid. Male offspring remained on diet and performed cognitive tests during puberty and adulthood. In adulthood, animals underwent (31)P magnetic resonance spectroscopy to assess brain energy metabolites. Thereafter, biochemical and immunohistochemical analyses were performed assessing inflammation, neurogenesis and synaptic plasticity. Compared to the n-3 PUFA deficient group, pubertal n-3 PUFA adequate fed mice demonstrated increased motor coordination. Adult n-3 PUFA adequate fed mice exhibited increased exploratory behavior, sensorimotor integration and spatial memory, while neurogenesis in the hippocampus was decreased. Selected brain regions of n-3 PUFA adequate fed mice contained significantly lower levels of arachidonic acid and higher levels of DHA and dihomo-γ-linolenic acid. Our data suggest that dietary n-3 PUFA can modify neural maturation and enhance brain functioning in healthy C57BL/6J mice. This indicates that availability of n-3 PUFA in infant diet during early development may have a significant impact on brain development.


Neural Plasticity | 2016

A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice

Maximilian Wiesmann; Valerio Zerbi; Diane Jansen; Roy A.M. Haast; Dieter Lütjohann; Laus M. Broersen; Arend Heerschap; Amanda J. Kiliaan

APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimers disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10–12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16–18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging.


The Journal of Neuroscience | 2014

Resting-State Functional Connectivity Changes in Aging apoE4 and apoE-KO Mice

Valerio Zerbi; Maximilian Wiesmann; T.L. Emmerzaal; Diane Jansen; M. van den Beek; M.P. Mutsaers; Christian F. Beckmann; Arend Heerschap; Amanda J. Kiliaan

It is well established that the cholesterol-transporter apolipoprotein ε (APOE) genotype is associated with the risk of developing neurodegenerative diseases. Recently, brain functional connectivity (FC) in apoE-ε4 carriers has been investigated by means of resting-state fMRI, showing a marked differentiation in several functional networks at different ages compared with carriers of other apoE isoforms. The causes of such hampered FC are not understood. We hypothesize that vascular function and synaptic repair processes, which are both impaired in carriers of ε4, are the major contributors to the loss of FC during aging. To test this hypothesis, we integrated several different MRI techniques with immunohistochemistry and investigated FC changes in relation with perfusion, diffusion, and synaptic density in apoE4 and apoE-knock-out (KO) mice at 12 (adult) and 18 months of age. Compared with wild-type mice, we detected FC deficits in both adult and old apoE4 and apoE-KO mice. In apoE4 mice, these changes occurred concomitant with increased mean diffusivity in the hippocampus, whereas perfusion deficits appear only later in life, together with reduced postsynaptic density levels. Instead, in apoE-KO mice FC deficits were mirrored by strongly reduced brain perfusion since adulthood. In conclusion, we provide new evidence for a relation between apoE and brain connectivity, possibly mediated by vascular risk factors and by the efficiency of APOE as synaptic modulator in the brain. Our results show that multimodal MR neuroimaging is an excellent tool to assess brain function and to investigate early neuropathology and aging effects in translational research.


Nutrients | 2015

Impact of Nutrition on Cerebral Circulation and Cognition in the Metabolic Syndrome

Laura Mellendijk; Maximilian Wiesmann; Amanda J. Kiliaan

The increasing prevalence of Metabolic Syndrome (MetS), defined as the clustering of abdominal obesity, dyslipidemia, hypertension, and hyperglycemia, appears to be driving the global epidemics cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Nutrition has a major impact on MetS and plays an important role in the prevention, development, and treatment of its features. Structural and functional alterations in the vasculature, associated with MetS, might form the link between MetS and the increased risk of developing CVD and T2DM. Not only does the peripheral vasculature seem to be affected, but the syndrome has a profound impact on the cerebral circulation and thence brain structure as well. Furthermore, strong associations are shown with stroke, cognitive impairment, and dementia. In this review the impact of nutrition on the individual components of MetS, the effects of MetS on peripheral and cerebral vasculature, and its consequences for brain structure and function will be discussed.


Theranostics | 2017

A specific dietary intervention to restore brain structure and function after ischemic stroke

Maximilian Wiesmann; Bastian Zinnhardt; Dirk Reinhardt; Sarah Eligehausen; Lydia Wachsmuth; Sven Hermann; Pieter J. Dederen; Marloes Hellwich; Michael T. Kuhlmann; Laus M. Broersen; Arend Heerschap; Andreas H. Jacobs; Amanda J. Kiliaan

Occlusion of the middle cerebral artery (MCAo) is among the most common causes of ischemic stroke in humans. Cerebral ischemia leads to brain lesions existing of an irreversibly injured core and an ischemic boundary zone, the penumbra, containing damaged but potentially salvageable tissue. Using a transient occlusion (30 min) of the middle cerebral artery (tMCAo) mouse model in this cross-institutional study we investigated the neurorestorative efficacy of a dietary approach (Fortasyn) comprising docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium as therapeutic approach to counteract neuroinflammation and impairments of cerebral (structural+functional) connectivity, cerebral blood flow (CBF), and motor function. Male adult C57BL/6j mice were subjected to right tMCAo using the intraluminal filament model. Following tMCAo, animals were either maintained on Control diet or switched to the multicomponent Fortasyn diet. At several time points after tMCAo, behavioral tests, and MRI and PET scanning were conducted to identify the impact of the multicomponent diet on the elicited neuroinflammatory response, loss of cerebral connectivity, and the resulting impairment of motor function after experimental stroke. Mice on the multicomponent diet showed decreased neuroinflammation, improved functional and structural connectivity, beneficial effect on CBF, and also improved motor function after tMCAo. Our present data show that this specific dietary intervention may have beneficial effects on structural and functional recovery and therefore therapeutic potential after ischemic stroke.


International Journal of Obesity | 2017

Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice

Ilse A.C. Arnoldussen; Maximilian Wiesmann; C E Pelgrim; E M Wielemaker; W van Duyvenvoorde; P L Amaral-Santos; Lars Verschuren; B J F Keijser; Arend Heerschap; Robert Kleemann; Peter Y. Wielinga; Amanda J. Kiliaan

Objective:Midlife obesity affects cognition and increases risk of developing dementia. Recent data suggest that intake of the short chain fatty acid butyrate could improve memory function, and may protect against diet-induced obesity by reducing body weight and adiposity.Subjects:We examined the impact of a high-fat diet (HFD) followed by intervention with 5% (w/w) dietary butyrate, on metabolism, microbiota, brain function and structure in the low-density-lipoprotein receptor knockout (LDLr−/−) mouse model in mid and late life.Results:In mid-adult mice, 15 weeks of HFD-induced adiposity, liver fibrosis and neuroinflammation, increased systolic blood pressure and decreased cerebral blood flow, functional connectivity assessed with neuroimaging. The subsequent 2 months butyrate intervention restored these detrimental effects to chow-fed control levels. Both HFD and butyrate intervention decreased variance in fecal microbiota composition. In late-adult mice, HFD showed similar detrimental effects and decreased cerebral white and gray matter integrity, whereas butyrate intervention attenuated only metabolic parameters.Conclusion:HFD induces detrimental effects in mid- and late-adult mice, which can be attenuated by butyrate intervention. These findings are consistent with reported associations between midlife obesity and cognitive impairment and dementia in humans. We suggest that butyrate may have potential in prevention and treatment of midlife obesity.


Theranostics | 2017

Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice

Maximilian Wiesmann; Valerio Zerbi; Diane Jansen; Dieter Lütjohann; Andor Veltien; Arend Heerschap; Amanda J. Kiliaan

Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimers disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPPswe/PS1dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.


Journal of Nutritional Biochemistry | 2016

Early intake of long-chain polyunsaturated fatty acids preserves brain structure and function in diet-induced obesity

Ilse A.C. Arnoldussen; Valerio Zerbi; Maximilian Wiesmann; Rikko H.J. Noordman; Simone Bolijn; Martina P.C. Mutsaers; Pieter J. Dederen; Robert Kleemann; Teake Kooistra; Eric van Tol; Gabriele Gross; Marieke H. Schoemaker; Arend Heerschap; Peter Y. Wielinga; Amanda J. Kiliaan

Worldwide, the incidence of obesity is increasing at an alarming rate, and the number of children with obesity is especially worrisome. These developments raise concerns about the physical, psychosocial and cognitive consequences of obesity. It was shown that early dietary intake of arachidonic acid (ARA) and docosahexaenoic acid (DHA) can reduce the detrimental effects of later obesogenic feeding on lipid metabolism and adipogenesis in an animal model of mild obesity. In the present study, the effects of early dietary ARA and DHA on cognition and brain structure were examined in mildly obesogenic ApoE*3Leiden mouse model. We used cognitive tests and neuroimaging during early and later life. During their early development after weaning (4-13weeks of age), mice were fed a chow diet or ARA and DHA diet for 8 weeks and then switched to a high-fat and high-carbohydrate (HFHC) diet for 12weeks (14-26weeks of age). An HFHC-diet led to increased energy storage in white adipose tissue, increased cholesterol levels, decreased triglycerides levels, increased cerebral blood flow and decreased functional connectivity between brain regions as well as cerebrovascular and gray matter integrity. ARA and DHA intake reduced the HFHC-diet-induced increase in body weight, attenuated plasma triglycerides levels and improved cerebrovasculature, gray matter integrity and functional connectivity in later life. In conclusion, an HFHC diet causes adverse structural brain and metabolic adaptations, most of which can be averted by dietary ARA and DHA intake early in life supporting metabolic flexibility and cerebral integrity later in life.


Journal of Cerebral Blood Flow and Metabolism | 2017

Angiotensin II, hypertension, and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease.

Maximilian Wiesmann; Monica Roelofs; Robert van der Lugt; Arend Heerschap; Amanda J. Kiliaan; Jurgen A.H.R. Claassen

Elevated angiotensin II causes hypertension and contributes to Alzheimer’s disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer’s disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer’s disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer’s disease and wild-type mice, and only 12 months of Alzheimer’s disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer’s disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer’s disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer’s disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer’s disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer’s disease.


Theranostics | 2018

In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation

Bastian Zinnhardt; Maximilian Wiesmann; Lisa Honold; Cristina Barca; Michael Schäfers; Amanda J. Kiliaan; Andreas H. Jacobs

Modulation of the inflammatory microenvironment after stroke opens a new avenue for the development of novel neurorestorative therapies in stroke. Understanding the spatio-temporal profile of (neuro-)inflammatory imaging biomarkers in detail thereby represents a crucial factor in the development and application of immunomodulatory therapies. The early integration of quantitative molecular imaging biomarkers in stroke drug development may provide key information about (i) early diagnosis and follow-up, (ii) spatio-temporal drug-target engagement (pharmacodynamic biomarker), (iii) differentiation of responders and non-responders in the patient cohort (inclusion/exclusion criteria; predictive biomarkers), and (iv) the mechanism of action. The use of targeted imaging biomarkers for may thus allow clinicians to decipher the profile of patient-specific inflammatory activity and the development of patient-tailored strategies for immunomodulatory and neuro-restorative therapies in stroke. Here, we highlight the recent developments in preclinical and clinical molecular imaging biomarkers of neuroinflammation (endothelial markers, microglia, MMPs, cell labeling, future developments) in stroke and outline how imaging biomarkers can be used in overcoming current translational roadblocks and attrition in order to advance new immunomodulatory compounds within the clinical pipeline.

Collaboration


Dive into the Maximilian Wiesmann's collaboration.

Top Co-Authors

Avatar

Amanda J. Kiliaan

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Arend Heerschap

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Valerio Zerbi

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane Jansen

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter J. Dederen

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge