Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maxwell P. Lee is active.

Publication


Featured researches published by Maxwell P. Lee.


Nature Genetics | 2010

A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma

Christian C. Abnet; Neal D. Freedman; Nan Hu; Zhaoming Wang; Kai Yu; Xiao-Ou Shu; Jian-Min Yuan; Wei Zheng; Sanford M. Dawsey; Linda M. Dong; Maxwell P. Lee; Ti Ding; You-Lin Qiao; Yu-Tang Gao; Woon-Puay Koh; Yong Bing Xiang; Ze Zhong Tang; Jin Hu Fan; Chaoyu Wang; William Wheeler; Mitchell H. Gail; Meredith Yeager; Jeff Yuenger; Amy Hutchinson; Kevin B. Jacobs; Carol Giffen; Laurie Burdett; Joseph F. Fraumeni; Margaret A. Tucker; Wong Ho Chow

We conducted a genome-wide association study of gastric cancer and esophageal squamous cell carcinoma (ESCC) in ethnic Chinese subjects in which we genotyped 551,152 SNPs. We report a combined analysis of 2,240 gastric cancer cases, 2,115 ESCC cases and 3,302 controls drawn from five studies. In logistic regression models adjusted for age, sex and study, multiple variants at 10q23 had genome-wide significance for gastric cancer and ESCC independently. A notable signal was rs2274223, a nonsynonymous SNP located in PLCE1, for gastric cancer (P = 8.40 × 10−9; per-allele odds ratio (OR) = 1.31) and ESCC (P = 3.85 × 10−9; OR = 1.34). The association with gastric cancer differed by anatomic subsite. For tumors in the cardia the association was stronger (P = 4.19 × 10−15; OR = 1.57), and for those in the noncardia stomach it was absent (P = 0.44; OR = 1.05). Our findings at 10q23 could provide insight into the high incidence of both cancers in China.


Journal of Clinical Investigation | 2000

Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice.

Maxwell P. Lee; Jason D. Ravenel; Ren-Ju Hu; Lawrence R. Lustig; Gordon F. Tomaselli; Ronald D. Berger; Sheri Brandenburg; Tracy J. Litzi; Tracie E. Bunton; Charles J. Limb; Howard W. Francis; Melissa J Gorelikow; Hua Gu; Kay Washington; Pedram Argani; James R. Goldenring; Robert J. Coffey; Andrew P. Feinberg

The KvLQT1 gene encodes a voltage-gated potassium channel. Mutations in KvLQT1 underlie the dominantly transmitted Ward-Romano long QT syndrome, which causes cardiac arrhythmia, and the recessively transmitted Jervell and Lange-Nielsen syndrome, which causes both cardiac arrhythmia and congenital deafness. KvLQT1 is also disrupted by balanced germline chromosomal rearrangements in patients with Beckwith-Wiedemann syndrome (BWS), which causes prenatal overgrowth and cancer. Because of the diverse human disorders and organ systems affected by this gene, we developed an animal model by inactivating the murine Kvlqt1. No electrocardiographic abnormalities were observed. However, homozygous mice exhibited complete deafness, as well as circular movement and repetitive falling, suggesting imbalance. Histochemical study revealed severe anatomic disruption of the cochlear and vestibular end organs, suggesting that Kvlqt1 is essential for normal development of the inner ear. Surprisingly, homozygous mice also displayed threefold enlargement by weight of the stomach resulting from mucous neck cell hyperplasia. Finally, there were no features of BWS, suggesting that Kvlqt1 is not responsible for BWS.


American Journal of Human Genetics | 2002

Epigenetic Alterations of H19 and LIT1 Distinguish Patients with Beckwith-Wiedemann Syndrome with Cancer and Birth Defects

Michael R. DeBaun; Emily L. Niemitz; D. Elizabeth McNeil; Sheri Brandenburg; Maxwell P. Lee; Andrew P. Feinberg

Beckwith-Wiedemann syndrome (BWS) is a congenital cancer-predisposition syndrome associated with embryonal cancers, macroglossia, macrosomia, ear pits or ear creases, and midline abdominal-wall defects. The most common constitutional abnormalities in BWS are epigenetic, involving abnormal methylation of either H19 or LIT1, which encode untranslated RNAs on 11p15. We hypothesized that different epigenetic alterations would be associated with specific phenotypes in BWS. To test this hypothesis, we performed a case-cohort study, using the BWS Registry. The cohort consisted of 92 patients with BWS and molecular analysis of both H19 and LIT1, and these patients showed the same frequency of clinical phenotypes as those patients in the Registry from whom biological samples were not available. The frequency of altered DNA methylation of H19 in patients with cancer was significantly higher, 56% (9/16), than the frequency in patients without cancer, 17% (13/76; P=.002), and cancer was not associated with LIT1 alterations. Furthermore, the frequency of altered DNA methylation of LIT1 in patients with midline abdominal-wall defects and macrosomia was significantly higher, 65% (41/63) and 60% (46/77), respectively, than in patients without such defects, 34% (10/29) and 18% (2/11), respectively (P=.012 and P=.02, respectively). Additionally, paternal uniparental disomy (UPD) of 11p15 was associated with hemihypertrophy (P=.003), cancer (P=.03), and hypoglycemia (P=.05). These results define an epigenotype-phenotype relationship in BWS, in which aberrant methylation of H19 and LIT1 and UPD are strongly associated with cancer risk and specific birth defects.


Journal of Clinical Investigation | 1990

Isolation, characterization, and localization of heparin-binding growth factors in the heart.

W Casscells; E Speir; Joachim Sasse; Michael Klagsbrun; Patrick Allen; Maxwell P. Lee; B Calvo; M Chiba; L Haggroth; Judah Folkman

Acidic and basic fibroblast growth factors (aFGF and bFGF) are angiogenic polypeptide mitogens for cells of mesodermal and neuroectodermal origin. In this report we describe the purification from several normal human hearts (including a very fresh, nonischemic sample) of heparin-binding, acid-, heat- and trypsin-sensitive 14-18-kD peptides that crossreact with antisera against aFGF and bFGF. Further evidence includes (a) prevention of mitogenicity by protamine and by anti-bFGF, (b) displacement of 125I-bFGF from cell membranes, and (c) stimulation of capillary endothelial cell migration. Specific immunohistochemistry localized bFGF to endothelial cells and, surprisingly, to cardiac myocytes, with almost no immunoreactivity in smooth muscle cells. These peptides may function in cardiac embryogenesis, hypertrophy, atherogenesis, angiogenesis, and wound healing, and may also have endocrine, neurotropic, or vasomotor functions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Bromodomain 4 activation predicts breast cancer survival

Nigel P.S. Crawford; Jude Alsarraj; Luanne Lukes; Renard C. Walker; Jennifer S. Officewala; Howard H. Yang; Maxwell P. Lee; Keiko Ozato; Kent W. Hunter

Previous work identified the Rap1 GTPase-activating protein Sipa1 as a germ-line-encoded metastasis modifier. The bromodomain protein Brd4 physically interacts with and modulates the enzymatic activity of Sipa1. In vitro analysis of a highly metastatic mouse mammary tumor cell line ectopically expressing Brd4 demonstrates significant reduction of invasiveness without altering intrinsic growth rate. However, a dramatic reduction of tumor growth and pulmonary metastasis was observed after s.c. implantation into mice, implying that activation of Brd4 may somehow be manipulating response to tumor microenvironment in the in vivo setting. Further in vitro analysis shows that Brd4 modulates extracellular matrix gene expression, a class of genes frequently present in metastasis-predictive gene signatures. Microarray analysis of the mammary tumor cell lines identified a Brd4 activation signature that robustly predicted progression and/or survival in multiple human breast cancer datasets analyzed on different microarray platforms. Intriguingly, the Brd4 signature also almost perfectly matches a molecular classifier of low-grade tumors. Taken together, these data suggest that dysregulation of Brd4-associated pathways may play an important role in breast cancer progression and underlies multiple common prognostic signatures.


American Journal of Human Genetics | 1997

Low Frequency of p57KIP2 Mutation in Beckwith-Wiedemann Syndrome

Maxwell P. Lee; Michael R. DeBaun; Gurvaneet S. Randhawa; Betty A. Reichard; Stephen J. Elledge; Andrew P. Feinberg

Beckwith-Wiedemann syndrome (BWS) is an autosomal dominant disorder of increased prenatal growth and predisposition to embryonal cancers such as Wilms tumor. BWS is thought to involve one or more imprinted genes, since some patients show paternal uniparental disomy, and others show balanced germ-line chromosomal rearrangements involving the maternal chromosome. We previously mapped BWS, by genetic linkage analysis, to 11p15.5, which we and others also found to contain several imprinted genes; these include the gene for insulin-like growth factor II (IGF2) and H19, which show abnormal imprint-specific expression and/or methylation in 20% of BWS patients, and p57KIP2, a cyclin-dependent kinase inhibitor, which we found showed biallelic expression in one of nine BWS patients studied. In addition, p57KIP2 was recently reported to show mutations in two of nine BWS patients. We have now analyzed the entire coding sequence and intron-exon boundaries of p57KIP2 in 40 unrelated BWS patients. Of these patients, only two (5%) showed mutations, both involving frameshifts in the second exon. In one case, the mutation was transmitted to the probands mother, who was also affected, from the maternal grandfather, suggesting that p57KIP2 is not imprinted in at least some affected tissues at a critical stage of development and that haploinsufficiency due to mutation of either parental allele may cause at least some features of BWS. The low frequency of p57KIP2 mutations, as well as our recent discovery of disruption of the K(v)LQT1 gene in patients with chromosomal rearrangements, suggest that BWS can involve disruption of multiple independent 11p15.5 genes.


Nature Genetics | 2000

Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios.

Hiroshi Uejima; Maxwell P. Lee; Hengmi Cui; Andrew P. Feinberg

We have developed a simple, quantitative assay for measurement of allele ratios that circumvents the problem of heteroduplex formation skewing the results of restriction endonuclease digestion of PCR products. This assay, ‘hot-stop PCR’, involves addition of a radiolabelled PCR primer at the final cycle. We applied the assay to analysis of loss of imprinting (LOI) of the insulin-like growth factor II gene (IGF2) in tumours.


Journal of Molecular Biology | 1989

Structure of the Drosophila DNA topoisomerase II gene. Nucleotide sequence and homology among topoisomerases II

Elizabeth E. Wyckoff; Donna Natalie; James M. Nolan; Maxwell P. Lee; Tao-Shih Hsieh

We have determined the nucleotide sequence of the Drosophila DNA topoisomerase II gene. Data from primer extension and S1 nuclease protection experiments were combined with comparisons of genomic and cDNA sequences to determine the structure of the mature messenger RNA. This message has a large open reading frame of 4341 nucleotides. The length of the predicted protein is 1447 amino acids with a molecular weight of 164,424. Topoisomerase II can be divided into three domains: (1) an N-terminal region with homology to the B (ATPase) subunit of the bacterial type II topoisomerase, DNA gyrase; (2) a central region with homology to the A (breaking and rejoining) subunit of DNA gyrase; (3) a C-terminal region characterized by alternating stretches of positively and negatively charged amino acids. DNA topoisomerase II from the fruit fly shares significant sequence homology with those from divergent sources, including bacteria, bacteriophage T4 and yeasts. The location and distribution of homologous stretches in these sequences are analyzed.


PLOS ONE | 2010

Delineating Genetic Alterations for Tumor Progression in the MCF10A Series of Breast Cancer Cell Lines

Mitsutaka Kadota; Howard H. Yang; Bianca Gomez; Misako Sato; Robert J. Clifford; Daoud Meerzaman; Barbara Dunn; Lalage M. Wakefield; Maxwell P. Lee

To gain insight into the role of genomic alterations in breast cancer progression, we conducted a comprehensive genetic characterization of a series of four cell lines derived from MCF10A. MCF10A is an immortalized mammary epithelial cell line (MEC); MCF10AT is a premalignant cell line generated from MCF10A by transformation with an activated HRAS gene; MCF10CA1h and MCF10CA1a, both derived from MCF10AT xenografts, form well-differentiated and poorly-differentiated malignant tumors in the xenograft models, respectively. We analyzed DNA copy number variation using the Affymetrix 500 K SNP arrays with the goal of identifying gene-specific amplification and deletion events. In addition to a previously noted deletion in the CDKN2A locus, our studies identified MYC amplification in all four cell lines. Additionally, we found intragenic deletions in several genes, including LRP1B in MCF10CA1h and MCF10CA1a, FHIT and CDH13 in MCF10CA1h, and RUNX1 in MCF10CA1a. We confirmed the deletion of RUNX1 in MCF10CA1a by DNA and RNA analyses, as well as the absence of the RUNX1 protein in that cell line. Furthermore, we found that RUNX1 expression was reduced in high-grade primary breast tumors compared to low/mid-grade tumors. Mutational analysis identified an activating PIK3CA mutation, H1047R, in MCF10CA1h and MCF10CA1a, which correlates with an increase of AKT1 phosphorylation at Ser473 and Thr308. Furthermore, we showed increased expression levels for genes located in the genomic regions with copy number gain. Thus, our genetic analyses have uncovered sequential molecular events that delineate breast tumor progression. These events include CDKN2A deletion and MYC amplification in immortalization, HRAS activation in transformation, PIK3CA activation in the formation of malignant tumors, and RUNX1 deletion associated with poorly-differentiated malignant tumors.


Cancer Research | 2005

Genome-Wide Association Study in Esophageal Cancer Using GeneChip Mapping 10K Array

Nan Hu; Chaoyu Wang; Ying Hu; Howard H. Yang; Carol Giffen; Ze Zhong Tang; Xiao Yu Han; Alisa M. Goldstein; Michael R. Emmert-Buck; Kenneth H. Buetow; Philip R. Taylor; Maxwell P. Lee

Whole genome association studies of complex human diseases represent a new paradigm in the postgenomic era. In this study, we report application of the Affymetrix, Inc. (Santa Clara, CA) high-density single nucleotide polymorphism (SNP) array containing 11,555 SNPs in a pilot case-control study of esophageal squamous cell carcinoma (ESCC) that included the analysis of germ line samples from 50 ESCC patients and 50 matched controls. The average genotyping call rate for the 100 samples analyzed was 96%. Using the generalized linear model (GLM) with adjustment for potential confounders and multiple comparisons, we identified 37 SNPs associated with disease, assuming a recessive mode of transmission; similarly, 48 SNPs were identified assuming a dominant mode and 53 SNPs in a continuous mode. When the 37 SNPs identified from the GLM recessive mode were used in a principal components analysis, the first principal component correctly predicted 46 of 50 cases and 47 of 50 controls. Among all the SNPs selected from GLMs for the three modes of transmission, 39 could be mapped to 1 of 33 genes. Many of these genes are involved in various cancers, including GASC1, shown previously to be amplified in ESCCs, and EPHB1 and PIK3C3. In conclusion, we have shown the feasibility of the Affymetrix 10K SNP array in genome-wide association studies of common cancers and identified new candidate loci to study in ESCC.

Collaboration


Dive into the Maxwell P. Lee's collaboration.

Top Co-Authors

Avatar

Howard H. Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Hu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chaoyu Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alisa M. Goldstein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Buetow

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lalage M. Wakefield

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Su

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge